Presently, among the global ocean energy technologies, the most conventional one is the wave energy power generation device based on the oscillating water column (OWC) wave energy converter. Given the fluctuation and randomness of waves and the complexity of the current power grid, the dynamic response of grid connections must be considered. Furthermore, considering the characteristics of the wave energy converter, this paper proposed an adaptive intelligent controller (AIC) for the permanent magnet synchronous generator (PMSG) in an OWC. The proposed controller includes a grey predictor, a recurrent wavelet-based Elman neural network (RWENN), and an adaptive critical network (ACN) to improve the stability of OWC power generation. This scheme can increase the maximum power output and improve dynamic performance when a transient occurs under the operating conditions of random wave changes. The proposed AIC for the PMSG based on OWC has a faster response speed, a smaller overshoot, and better stability than the traditional PI controller. This further verifies the availability of the proposed control strategy.