2022
DOI: 10.1080/02331888.2022.2134384
|View full text |Cite
|
Sign up to set email alerts
|

Novel goodness-of-fit tests for binomial count time series

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(4 citation statements)
references
References 22 publications
0
4
0
Order By: Relevance
“…Utilizing the binomial Stein identity (2), Aleksandrov et al. (2021) proposed a binomial GoF‐test based on the statistic trueT̂f;0.16emBinbadbreak=()NX¯0.33emX0.16emffalse(Xfalse)¯0.16emX¯0.33emfalse(NXfalse)0.16emffalse(X+1false)¯,$$\begin{equation} \hat{\mbox{T}}\!_{f;\,{\rm Bin}} =\frac{{\left(N-\overline{X}\right)}\ \overline{X\,f(X)}}{\, \overline{X}\ \overline{(N-X)\,f(X+1)}}, \end{equation}$$where normalTf;0.16emBinbadbreak=()NE[X]0.16emE[]Xf(X)E[X]0.16emE[](NX)f(X+1)1emequals0.33emnormal10.33emunder0.33emthe0.33emBin-null.$$\begin{equation} \mbox{T}\!_{f;\,{\rm Bin}}=\frac{{\left(N-E[X]\right)}\,E{\left[X\,f(X)\right]}}{E[X]\,E{\left[(N-X)\,f(X+1)\right]}} \quad \text{equals\nobreakspace 1 under the Bin-null}. \end{equation}$$Note that the statistic normalTf;0.16emBin$\mbox{T}\!_{f;\,{\rm Bin}}$ in (25) (as well as the asymptotics in Theorem 2) can again be expressed by using the moments μ(k;l1,,lm)=E[Xk·ffalse(X+l1false)ffalse(X+lmfalse)]…”
Section: Extension To Binomial Stein Identitymentioning
confidence: 99%
See 3 more Smart Citations
“…Utilizing the binomial Stein identity (2), Aleksandrov et al. (2021) proposed a binomial GoF‐test based on the statistic trueT̂f;0.16emBinbadbreak=()NX¯0.33emX0.16emffalse(Xfalse)¯0.16emX¯0.33emfalse(NXfalse)0.16emffalse(X+1false)¯,$$\begin{equation} \hat{\mbox{T}}\!_{f;\,{\rm Bin}} =\frac{{\left(N-\overline{X}\right)}\ \overline{X\,f(X)}}{\, \overline{X}\ \overline{(N-X)\,f(X+1)}}, \end{equation}$$where normalTf;0.16emBinbadbreak=()NE[X]0.16emE[]Xf(X)E[X]0.16emE[](NX)f(X+1)1emequals0.33emnormal10.33emunder0.33emthe0.33emBin-null.$$\begin{equation} \mbox{T}\!_{f;\,{\rm Bin}}=\frac{{\left(N-E[X]\right)}\,E{\left[X\,f(X)\right]}}{E[X]\,E{\left[(N-X)\,f(X+1)\right]}} \quad \text{equals\nobreakspace 1 under the Bin-null}. \end{equation}$$Note that the statistic normalTf;0.16emBin$\mbox{T}\!_{f;\,{\rm Bin}}$ in (25) (as well as the asymptotics in Theorem 2) can again be expressed by using the moments μ(k;l1,,lm)=E[Xk·ffalse(X+l1false)ffalse(X+lmfalse)]…”
Section: Extension To Binomial Stein Identitymentioning
confidence: 99%
“…It covers the special case of Binfalse(N,πfalse)$\mbox{Bin}(N,\pi )$‐counts with exponential weighting scheme ffalse(xfalse)=expfalse(xfalse)$f(x)=\exp (-x)$ as considered by Aleksandrov et al. (2021).…”
Section: Extension To Binomial Stein Identitymentioning
confidence: 99%
See 2 more Smart Citations