2021
DOI: 10.48550/arxiv.2110.03353
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Noisy Text Data: Achilles' Heel of popular transformer based NLP models

Kartikay Bagla,
Ankit Kumar,
Shivam Gupta
et al.

Abstract: In the last few years, the ML community has created a number of new NLP models based on transformer architecture. These models have shown great performance for various NLP tasks on benchmark datasets, often surpassing SOTA results. Buoyed with this success, one often finds industry practitioners actively experimenting with fine-tuning these models to build NLP applications for industry use cases. However, for most datasets that are used by practitioners to build industrial NLP applications, it is hard to guara… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0
1

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 13 publications
0
0
0
1
Order By: Relevance
“…Ao final desses processamentos, foram eliminados 4 documentos que continham apenas valores nulos. Essa fase é necessária para remover possíveis ruídos nos dados que podem diminuir a efetividade dos modelos[Bagla et al 2021].…”
unclassified
“…Ao final desses processamentos, foram eliminados 4 documentos que continham apenas valores nulos. Essa fase é necessária para remover possíveis ruídos nos dados que podem diminuir a efetividade dos modelos[Bagla et al 2021].…”
unclassified