In this paper, we study a 6-field integrable lattice system, which, in some special cases, can be reduced to the self-dual network equation, the discrete second-order nonlinear Schrödinger equation and the relativistic Volterra lattice equation. With the help of the Lax pair, we construct infinitely many conservation laws and a new Darboux transformation for system. Exact solutions resulting from the obtained Darboux transformation are presented by using a given seed solution. Further, we generate the soliton solutions and plot the figures of one-soliton solutions with properly parameters.