In common with other herpes viruses, bovine herpes virus 1 (BHV-1) induces strong virus-specific CD8 T-cell responses. However, there is a paucity of information on the antigenic specificity of the responding T-cells. The development of a system to generate virus-specific CD8 T-cell lines from BHV-1-immune cattle, employing Theileria-transformed cell lines for antigen presentation, has enabled us to address this issue. Use of this system allowed the study to screen for CD8 T-cell antigens that are efficiently presented on the surface of virus-infected cells. Screening of a panel of 16 candidate viral gene products with CD8 T-cell lines from 3 BHV-1-immune cattle of defined MHC genotypes identified 4 antigens, including 3 immediate early (IE) gene products (ICP4, ICP22 and Circ) and a tegument protein (UL49). Identification of the MHC restriction specificities revealed that the antigens were presented by two or three class I MHC alleles in each animal. Six CD8 T-cell epitopes were identified in the three IE proteins by screening of synthetic peptides. Use of an algorithm (NetMHCpan) that predicts the peptide-binding characteristics of restricting MHC alleles confirmed and, in some cases refined, the identity of the epitopes. Analyses of the epitope specificity of the CD8 T-cell lines showed that a large component of the response is directed against these IE epitopes. The results indicate that these IE gene products are dominant targets of the CD8 T-cell response in BHV-I-immune cattle and hence are prime-candidate antigens for the generation of a subunit vaccine.