Future expected changes in climate and human activity threaten many riparian habitats, particularly in the southwestern U.S. Using Maximum Entropy (MaxEnt3.3.3) modeling, we characterized habitat relationships and generated spatial predictions of habitat suitability for the Lucy’s warbler (Oreothlypis luciae), the Southwestern willow flycatcher (Empidonax traillii extimus) and the Western yellow-billed cuckoo (Coccyzus americanus). Our goal was to provide site- and species-specific information that can be used by managers to identify areas for habitat conservation and/or restoration along the Rio Grande in New Mexico. We created models of suitable habitat for each species based on collection and survey samples and climate, biophysical, and vegetation data. We projected habitat suitability under future climates by applying these models to conditions generated from three climate models for 2030, 2060 and 2090. By comparing current and future distributions, we identified how habitats are likely to change as a result of changing climate and the consequences of those changes for these bird species. We also examined whether land ownership of high value sites shifts under changing climate conditions. Habitat suitability models performed well. Biophysical characteristics were more important that climate conditions for predicting habitat suitability with distance to water being the single most important predictor. Climate, though less important, was still influential and led to declines of suitable habitat of more than 60% by 2090. For all species, suitable habitat tended to shrink over time within the study area leaving a few core areas of high importance. Overall, climate changes will increase habitat fragmentation and reduce breeding habitat patch size. The best strategy for conserving bird species within the Rio Grande will include measures to maintain and restore critical habitat refugia. This study provides an example of a presence-only habitat model that can be used to inform the management of species at intermediate scales.