This article reports a process for batch fabrication of a fiber pigtailed optomechanical transducer platform with overhanging. The platform enables a new class of high bandwidth, high sensitivity, and highly integrated sensors that are, compact, robust, and small, with the potential potential for low cost batch fabrication inherent in Micro-Opto-Electro-Mechanical-Systems technology. This article provides a guide to the whole fabrication process and explains critical steps and process choices in detail. Possible alternative fabrication techniques and problems are discussed. The fabrication process consists of electron beam lithography, i-line stepper lithography, and back-and frontside mask aligner lithography. The goal of this article is to provide a comprehensive description of the fabrication process, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nano-and microfabrication research communities at large.