Abstract. The process of tin-induced crystallization of amorphous silicon under the influence of different types of laser irradiation was investigated using the method of Raman scattering by thin-film Si-Sn-Si structures. The dependences of the size and concentration of Si nanocrystals on the power of laser radiation was experimentally evaluated and analyzed. As sources of excitation pulse laser radiation with the pulses duration equal to 20 ns and 150 μs and wavelengths equal to 535 and 1070 nm was used. The possibility of efficient tin-induced transformation of silicon from amorphous phase to crystalline one in the 200-nm thick layers of a-Si under the action of laser pulses with duration equal to 20 ns was shown. The spatial and temporal distributions of laser induced temperature rise was calculated to interpret experimental results.