Effects of tin doping on crystallization of amorphous silicon were studied using Raman scattering, Auger spectroscopy, scanning electron microscopy, and X-ray fluorescence techniques. Formation of silicon nanocrystals (2–4 nm in size) in the amorphous matrix of Si1−xSnx, obtained by physical vapor deposition of the components in vacuum, was observed at temperatures around 300 °C. The aggregate volume of nanocrystals in the deposited film of Si1−xSnx exceeded 60% of the total film volume and correlated well with the tin content. Formation of structures with ∼80% partial volume of the nanocrystalline phase was also demonstrated. Tin-induced crystallization of amorphous silicon occurred only around the clusters of metallic tin, which suggested the crystallization mechanism involving an interfacial molten Si:Sn layer.
This paper reviews the impact of doping silicon with substitutional tin impurities on the formation of intrinsic and extrinsic lattice defects. The two major topics covered are ͑i͒ the effect on the diffusivity and aggregation/precipitation of interstitial oxygen in Czochralski ͑CZ͒ silicon and ͑ii͒ the formation of stable radiation defects in irradiated Sn-doped material. As demonstrated, the compressive stress associated with incorporating a large Sn atom on a lattice site is the basic feature governing the interactions with point defects. Consequently, Sn acts as a selective vacancy trap, while, in contrast, not affecting interstitial reactions. This leads to a reduced formation of oxygen thermal donors in n-type Si and lowers the concentration of vacancy-oxygen and divacancy centers in irradiated material. Enhanced oxygen precipitation has been noted around 750°C in p-type CZ silicon. Furthermore, specific Sn-related radiation defects are introduced, which question the use of doping with tin as a technique for substrate hardening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.