Call admission control (CAC) functionality is a critical requirement for guarantee the desired quality of service (QoS) for voice calls in IP-based wireless networks. In this paper, three different CAC strategies for voice over IP (VoIP) traffic over wireless access networks with packet buffering are mathematically analyzed through a joint call and packet level discrete time teletraffic model. The admission criterion (i.e., admission threshold) of new sessions of these strategies is based on either the total number of sessions, the number of active sessions (i.e., sessions in talk-spurt periods), or the number of packets queued in the buffer. Admission threshold and buffer size can be both controlled for QoS provisioning in terms of session blocking and packet dropping probabilities. Arrivals and completions of VoIP sessions, on/off activity detection, and periodic and constant length packet generation (of active sessions) of individual VoIP sessions are modeled. The developed teletraffic analysis allows to evaluate the performance of the CAC strategies in terms of the most relevant QoS metrics of VoIP traffic at both call and packet level (i.e., session blocking and packet dropping probabilities and packet delay). Finally, the maximum traffic attained by the different studied-CAC strategies (while QoS provisioning is guaranteed) is obtained.Keywords-Call admission control; VoIP; joint call and packet level analysis; QoS provisioning; voice activity detection; session blocking; packet dropping probability; packet delay.