Modern ecohydrologic science will be critical for providing the best information to policy makers and society to address water resource challenges in the 21st century. Implicitly, ecohydrology involves understanding both the functional interactions among vegetation, soils, and hydrologic processes at multiple scales and the linkages among upland, riparian, and aquatic components. In this paper, we review historical and contemporary ecohydrologic science, focusing on watershed structure and function and the threats to watershed structure and function. Climate change, land use change, and invasive species are among the most critical contemporary issues that affect water quantity and quality, and a mechanistic understanding of watershed ecosystem structure and function is required to understand their impacts on water quantity and quality. Economic and social values of ecosystem services such as water supply from forested watersheds must be quantified in future research, as land use decisions that impact ecohydrologic function are driven by the interplay among economic, social, political, and biological constraints. Future forest ecohydrological research should focus on: (1) understanding watershed responses to climate change and variability, (2) understanding watershed responses to losses of native species or additions of non-native species, (3) developing integrated models that capitalize on long-term data, (4) linking ecohydrologic processes across scales, and (5) managing forested watersheds to adapt to climate change. We stress that this new ecohydrology research must also be integrated with socio-economic disciplines. Published in 2011. This article is a US Government work and is in the public domain in the USA.