2022
DOI: 10.3390/machines10030214
|View full text |Cite
|
Sign up to set email alerts
|

Motion Control of a Hydraulic Manipulator with Adaptive Nonlinear Model Compensation and Comparative Experiments

Abstract: Hydraulic manipulators play an irreplaceable role in many heavy-duty applications. Currently, there are stronger demands for the hydraulic manipulator to achieve high precision, as well as high force/power. However, due to the inherent nonlinearities of its high-order dynamics, the precision of the manipulator has been a common weakness compared with electrically driven ones. Thus, in this paper, a nonlinear adaptive robust control method for the hydraulic manipulator is proposed. To make the controller more a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 33 publications
0
1
0
Order By: Relevance
“…In robotics applications, we can use EHA systems to create drive systems with high load capacity and a large power density ratio [4]. The authors [5] leveraged EHA to develop a legged robot using model predictive trajectory tracking control with a multi-scale online estimator.…”
Section: Introductionmentioning
confidence: 99%
“…In robotics applications, we can use EHA systems to create drive systems with high load capacity and a large power density ratio [4]. The authors [5] leveraged EHA to develop a legged robot using model predictive trajectory tracking control with a multi-scale online estimator.…”
Section: Introductionmentioning
confidence: 99%