The historical knowledge inherited from house paint documents and the experimental research on synthetic pigments show that production methods have an important role in the performance of paint. In this regard, this work investigates the links existing between the optical emission, crystal defects and photocatalytic activity of zinc white pigment from different contemporary factories, with the aim of elucidating the effects of these characteristics onto the tendency of the pigment to induce paint failures. The analysed samples display highly similar crystallite structure, domain size, and specific surface area, whilst white pigments differ from pure ZnO in regards to the presence of zinc carbonate hydrate that is found as a foreign compound. In contrast, the photoluminescence measurements categorize the analysed samples into two groups, which display different trap-assisted emissions ascribed to point crystal defects introduced during the synthesis process, and associated to Zn or O displacement. The photocatalytic degradation tests infer that the emerged defective structure and specific surface area of ZnO-based samples influence their tendency to oxidize organic molecules under light irradiation. In particular, the results indicate that the zinc interstitial defects may be able to promote the photogenerated electron-hole couples separation with a consequent increase of the overall ZnO photocatalytic activity, negatively affecting the binding medium stability. This groundwork paves the way for further studies on the link between the photoluminescence emission of the zinc white pigment and its tendency to decompose organic components contained in the binding medium.