2020
DOI: 10.1007/s11075-020-00983-w
|View full text |Cite
|
Sign up to set email alerts
|

Modulus-based matrix splitting methods for a class of horizontal nonlinear complementarity problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 16 publications
(6 citation statements)
references
References 36 publications
0
5
0
1
Order By: Relevance
“…Estos problemas surgen de la discretización de una ecuación diferencial como la siguiente ∆x(ξ, η) + ∂ 2 w(ξ, η) ∂ξ 2 + µx(ξ, η) + νw(ξ, η) = q(ξ, η) + φ(ξ, η), con algunas condiciones de frontera y de complementariedad [25]. En la experimentación numérica usamos los parámetros establecidos en [25], A = A+µI n y B = B +νI n , con µ y ν constantes positivas, A tridiagonal por bloques, cuyas diagonales superior e inferior contienen, en cada uno de sus bloques la matriz −I m , con m 2 = n, y cuya diagonal principal contiene en cada bloque la matriz S = tridiag(− Consideramos tres términos no lineales, también propuestos en [25] que dieron lugar a tres problemas. Estas tres funciones φ 1 , φ 2 , φ 3 , se definen por, φ 1,i (x, w) = x 2 i , φ 2,i (x, w) = w 2 i , φ 3,i (x, w) = x i w i .…”
Section: Problemaunclassified
“…Estos problemas surgen de la discretización de una ecuación diferencial como la siguiente ∆x(ξ, η) + ∂ 2 w(ξ, η) ∂ξ 2 + µx(ξ, η) + νw(ξ, η) = q(ξ, η) + φ(ξ, η), con algunas condiciones de frontera y de complementariedad [25]. En la experimentación numérica usamos los parámetros establecidos en [25], A = A+µI n y B = B +νI n , con µ y ν constantes positivas, A tridiagonal por bloques, cuyas diagonales superior e inferior contienen, en cada uno de sus bloques la matriz −I m , con m 2 = n, y cuya diagonal principal contiene en cada bloque la matriz S = tridiag(− Consideramos tres términos no lineales, también propuestos en [25] que dieron lugar a tres problemas. Estas tres funciones φ 1 , φ 2 , φ 3 , se definen por, φ 1,i (x, w) = x 2 i , φ 2,i (x, w) = w 2 i , φ 3,i (x, w) = x i w i .…”
Section: Problemaunclassified
“…For the HLCP(A,B,q), Mezzadri and Galligani 1 constructed the standard and accelerated MS algorithms. Recently, they extended the MS algorithms to solve the HNCP(A,B,ϕ,q), 26 as shown in Algorithm 1 below.…”
Section: Introductionmentioning
confidence: 99%
“…In addition, the determination of the optimal iteration parameter of the MS algorithms is fundamentally important, since it is a critical step for the efficient implementation of these algorithms. In most of the literatures on this algorithm, the convergence interval of iteration parameter matrix Ω has been given, for example, for the LCP(A,q), 12 for the HNCP(A,B,ϕ,q), 26 for the HLCP(A,B,q) 1 and for the SOCLCP 19 . However, due to the nonlinearity of the MS algorithms, there are few studies on the optimal parameter.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…After that, a series of modulus-based type matrix splitting iteration methods have been proposed, for instance, the general modulus-based matrix splitting method [14], the preconditioned modulus-based matrix splitting iteration method [15], the two-step modulus-based matrix splitting iteration method [16], the accelerated modulus-based matrix splitting iteration methods [17], and so on. Since these modulus-based type matrix splitting iteration methods are usually very practical and effective, many authors extended this kind of methods to solve other complementarity problems, such as the implicit complementarity problems [6,18,19], the weakly nonlinear complementarity problems [3,4], the horizontal nonlinear complementarity problems [20,21], the quasi-complementarity problems [22], and so on.…”
Section: Introductionmentioning
confidence: 99%