2007
DOI: 10.1016/j.sna.2007.04.057
|View full text |Cite
|
Sign up to set email alerts
|

Modelling of a planar magnetic micropusher for biological cell manipulations

Abstract: To cite this version:Michaël Dauge, Michaël Gauthier, Emmanuel Piat. Modelling of a planar magnetic micropusher for biological cell manipulations.. Sensors and Actuators A: Physical , Elsevier, 2007, 138, pp.239-247. The improving of the efficiency and the automation of biological cell technologies is currently of great importance. One way is to build biological micro-factories which are able to perform complete biotechnological processes automatically. This technology requires the development o… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4

Citation Types

0
9
0
1

Year Published

2008
2008
2018
2018

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 22 publications
(10 citation statements)
references
References 17 publications
0
9
0
1
Order By: Relevance
“…El uso de electroimanes da como ventaja el control directo de los campos magnéticos y gradientes generados, y por ende, un control más preciso del micro robot en el medio. Pero en cambio la desventaja se presenta en la cantidad de energía necesaria para alimentar dichos sistemas, requiriendo equipos dedicados, manejo de altas corrientes y derivado a esto último, alto consumo de potencia y generación de calor, lo cual podría afectar el rendimiento esperado (Dauge et al, 2007;Hagiwara et al, 2011).…”
Section: Introductionunclassified
“…El uso de electroimanes da como ventaja el control directo de los campos magnéticos y gradientes generados, y por ende, un control más preciso del micro robot en el medio. Pero en cambio la desventaja se presenta en la cantidad de energía necesaria para alimentar dichos sistemas, requiriendo equipos dedicados, manejo de altas corrientes y derivado a esto último, alto consumo de potencia y generación de calor, lo cual podría afectar el rendimiento esperado (Dauge et al, 2007;Hagiwara et al, 2011).…”
Section: Introductionunclassified
“…For biomedical engineering, core tasks such as localized/targeted drug delivery, micro invasive surgery, cell manipulation, biosensing, cell sorting, and cell fusion can be performed [ 1 6 ]. In the field of industrial engineering, microrobots have shown their capabilities to complete microscale tasks such as micro-assembly, transport, precision micro-machining, and micro-manipulation [ 7 – 9 ]. In order to develop swimming microrobots for these applications, there have been various challenges.…”
Section: Introductionmentioning
confidence: 99%
“…Cells can be manipulated indirectly using optical tweezers by noncontact actuation of microtools; as a result, cells would be at reduced risk of damage during manipulation; however, the generated force in such a case is on the order of several pico-newtons, which is not suitable for manipulating cells on the order of 100 μm. In contrast, the risk of cell contamination by a cell manipulation operation such as magnetic sorting is limited; also, magnetic sorters are inexpensive (Abbott et al 2007;Mensing et al 2004;Ryu et al 2004; Barbic et al 2001;Jackson et al 2001;Maruyama et al 1422;Yamanishi et al 2007b, c;Liu and Yi 1999;Rostaing et al 2006;Dauge et al 2007), which is not the case with the cell sorters conventionally employed in flow cytometry systems. Therefore, magnetic cell sorters have been employed in many studies.…”
Section: Introductionmentioning
confidence: 99%