2023
DOI: 10.1103/physrevlett.131.052501
|View full text |Cite
|
Sign up to set email alerts
|

Ba138(d,α) Study of States in

B. M. Rebeiro,
S. Triambak,
P. E. Garrett
et al.
Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 52 publications
0
2
0
Order By: Relevance
“…This analysis allows a ∼100 keV fermion mass (Yunis et al 2020). On the other hand, promising direct searches of dark matter in terrestrial laboratories, e.g., xenon, krypton, and argon detectors, via the dark matter interactions with ordinary matter, electrons, and nucleons, via kinetic energy recoils or even target ionization have started to look for a dark matter fermion in the tens of keV range (see, e.g., Dror et al 2020;Shakeri et al 2020;Dror et al 2021;Aprile et al 2022;Ge et al 2022;Li et al 2022;Zhang et al 2022;Aalbers et al 2023;Abe et al 2023;Caddell et al 2023;PandaX Collaboration et al 2023;Rebeiro et al 2023;Smirnov & Trautner 2023, and references therein). This is precisely the fermion mass-energy range that we have inferred from combined astrophysical analyses.…”
Section: Discussionmentioning
confidence: 99%
“…This analysis allows a ∼100 keV fermion mass (Yunis et al 2020). On the other hand, promising direct searches of dark matter in terrestrial laboratories, e.g., xenon, krypton, and argon detectors, via the dark matter interactions with ordinary matter, electrons, and nucleons, via kinetic energy recoils or even target ionization have started to look for a dark matter fermion in the tens of keV range (see, e.g., Dror et al 2020;Shakeri et al 2020;Dror et al 2021;Aprile et al 2022;Ge et al 2022;Li et al 2022;Zhang et al 2022;Aalbers et al 2023;Abe et al 2023;Caddell et al 2023;PandaX Collaboration et al 2023;Rebeiro et al 2023;Smirnov & Trautner 2023, and references therein). This is precisely the fermion mass-energy range that we have inferred from combined astrophysical analyses.…”
Section: Discussionmentioning
confidence: 99%
“…This analysis allows a ∼ 100 keV fermion mass (Yunis & et al 2020). On the other hand, promising direct searches of dark matter in terrestrial laboratories, e.g., Xenon, Krypton, and Argon detectors, via the dark matter interactions with ordinary matter, electrons, and nucleons, via kinetic energy recoils or even target ionization have started to look for a dark matter fermion in the tens of keV range (see, e.g., Shakeri et al 2020;Dror et al 2020Dror et al , 2021Aprile et al 2022;Li et al 2022;Ge et al 2022;Rebeiro et al 2023;PandaX Collaboration et al 2023;Zhang et al 2022;Abe et al 2023;Caddell et al 2023;Aalbers et al 2023;Smirnov & Trautner 2023, and references therein). A mass-energy which we have inferred from combined astrophysical analyses.…”
Section: Discussionmentioning
confidence: 99%
“…Unlike the electron scattering channel, XeCC allows one-to-one neutrino energy reconstruction by detecting 𝑒 − and all de-excitation 𝛾-rays. Figure 1 shows the expected energy spectrum of XeCC events caused by solar neutrinos, where Δ𝑚 2 21 = 7.51 × 10 −5 eV 2 , sin 2 𝜃 12 = 0.306, sin 2 𝜃 13 = 0.0219 [5] and BP16-GS98 SSM [6] were assumed. The 7 Be-𝜈 rate, 5.9 ton −1 yr −1 , may be within reach of KamLAND-Zen 800 (see Section 3).…”
Section: Physics Targetsmentioning
confidence: 99%
“…𝜈 e (or dark matter : 𝜒) + 136 Xe → e − + 136 Cs * (XeCC) is an available reaction channel at xenonbased experiments whose observables are recoil electrons and de-excitation 𝛾-rays from the excited state of 136 Cs [1]. Recentry, the low-lying isomeric states in 136 Cs * with lifetimes on the order of 100 ns were observed [2,3]. Therefore, one can conduct delayed-coincidence tagging of multiple time-correlated de-excitation 𝛾-rays using a ns-response detector like liquid scintillator.…”
Section: Introductionmentioning
confidence: 99%