In this paper, the theory, micromachining technology, and experimental results of the coupling of integrated magnetic film-based resonators for microwave signal filtering are presented. This is an extended contribution to the field of magnetostatic wave coupled resonators, including details about the technological results, circuit theory, and perspective applications for tunable integrated coupled magnetic resonators. An analytical approach using the magnetostatic wave approximation is used to derive the coupling coefficient between adjacent resonators coupled by the electromagnetic field decaying outside the resonators. Then, micromachining employing hot phosphoric acid etching is presented to manufacture integrated coupled resonators. Finally, circuit modeling and experimental results obtained using the ferromagnetic resonance technique are discussed.