The theory of quantum Brownian motion describes the properties of a large class of open quantum systems. Nonetheless, its description in terms of a Born-Markov master equation, widely used in literature, is known to violate the positivity of the density operator at very low temperatures. We study an extension of existing models, leading to an equation in the Lindblad form, which is free of this problem. We study the dynamics of the model, including the detailed properties of its stationary solution, for both constant and position-dependent coupling of the Brownian particle to the bath, focusing in particular on the correlations and the squeezing of the probability distribution induced by the environment.