Abstract-The coming era of personalized cancer treatment is presenting automation with unprecedented opportunities. Currently, the drug susceptibility test of clinical cancer patients is mainly dependent on manual labor with a low level of automation. Automating the process of primary cancer cell detection will potentially have tremendous economic benefits and social significance. Automated cancer cell detection means developing robotic and automation equipments to handle single cells and molecules at the micro/nanometer-scale. The achievements of information science, engineering technology, life sciences, and nanotechnology in the past decades have led to the birth of robots that can perform effective manipulations on single living cells at the micro/nanometerscale in aqueous conditions, opening the door to automated cancer cell detection. However, there is still a huge gap between current single-cell micro/nano automation technology and clinical requirements for personalized medicine. In this paper, we will review the progress of single-cell micro/nano automation technology in recent years and discuss the facing challenges and future directions in three aspects, including automated cell isolation and delivery, automatically acquiring the physiological features of cells and data analysis.