2014
DOI: 10.1007/s00340-014-5863-5
|View full text |Cite
|
Sign up to set email alerts
|

Measurements of carbon monoxide mixing ratios in Houston using a compact high-power CW DFB-QCL-based QEPAS sensor

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 19 publications
0
2
0
1
Order By: Relevance
“…There are two basic approaches currently being adopted to improve sensitivity. One is increasing the excitation light power [13] , [14] , [15] , such as Yin et al boosted the NIR light to ~ 10 W, resulting in a ppb-level CO detection sensitivity [16] ; meanwhile, Yin et al detected multicomponent by-products of SF 6 decomposition by amplifying the light power to 1.724 W, achieving a minimum detection limits (MDL) of 435 ppb for CO [17] ; Mao et al implemented an all-optical photoacoustic spectrometer using 1 W light source, and the obtained detection limits for CO was 4.6 ppm [18] . However, increasing power light source will lead to high power consumption, high cost, degraded light beam quality and complex cooling system which significantly limits the commercialization of the CO sensor.…”
Section: Introductionmentioning
confidence: 99%
“…There are two basic approaches currently being adopted to improve sensitivity. One is increasing the excitation light power [13] , [14] , [15] , such as Yin et al boosted the NIR light to ~ 10 W, resulting in a ppb-level CO detection sensitivity [16] ; meanwhile, Yin et al detected multicomponent by-products of SF 6 decomposition by amplifying the light power to 1.724 W, achieving a minimum detection limits (MDL) of 435 ppb for CO [17] ; Mao et al implemented an all-optical photoacoustic spectrometer using 1 W light source, and the obtained detection limits for CO was 4.6 ppm [18] . However, increasing power light source will lead to high power consumption, high cost, degraded light beam quality and complex cooling system which significantly limits the commercialization of the CO sensor.…”
Section: Introductionmentioning
confidence: 99%
“…傅立叶变换红外吸收光谱(FTIR)常利用 CO 分子 2150-2320 cm -1 特征吸收光谱 并结合多次反射池,检测限低至~0.2 ppb [4] 。 上述测量方法对预处理要求较高,系统复杂且响应速度慢。可调谐半导体 激光吸收光谱(TDLAS)具有波长选择性强、测量速度快、免标定等优点 [5,6] 。 其中,直接吸收光谱(DAS)原理简单,可测量气体吸收率函数,广泛应用于环 境监测和工业过程气体分析等领域 [7,8] 。 然而, 激光强度波动、 光电探测器暗噪声、 1/f 噪声等限制了 DAS 测量灵敏度进一步提高 [9,10] ,在大气痕量 CO 浓度测量中, 目前多选择中红外强吸收谱线以提升测量灵敏度,如采用 4.57 μm 的量子级联激 光器(QCL)并结合多次反射池,CO 检测限可至~1 ppb [11][12][13] ;或者采用高频调 制的波长调制光谱(WMS)方法提升测量信噪比,通过提取高信噪比的 2 次谐 波信号,并可结合光声光谱(PAS) [14] 或光热光谱 [15] ,实现低至~1 ppb 的检测限 [16][17][18][19] ;以及采用等效光程 km 级的积分腔输出光谱(ICOS) [20] 实现 ppb~ppt 级的 CO 检测。由于中红外 QCL 多为自由空间光输出且成本较高,因而也有科研工作 者采用易于光纤耦合的近红外激光器进行 CO 测量,如采用垂直腔面发射激光器 (VCSEL) [21][22][23] ,利用 2.3 μm 附近的 CO 特征吸收谱线,结合 WMS 方法,在较 短光程(40 cm)时检测限可达到~0.4 ppm;以及采用 2.3 μm 分布反馈(DFB) 半导体激光器结合石英增强光声光谱(QEPAS) ,最小可探测 CO 浓度达到 43.3 ppm [24] ;或采用腔增强吸收光谱方法,在常压和有效光程 1545.6 cm 条件下最小 可探测 CO 浓度~34 ppm [25] ;或采用近红外 1.57 μm 的 DFB 半导体激光器,利用 腔衰荡光谱(CRDS)方法实现大气 CO 监测 [2,26] 。上述 WMS 方法通常需标定, 而 PAS、ICOS、CRDS 操作及维护较复杂且成本较高。近年来,彭等 [27]…”
unclassified
“…Quantum cascade structures operating in the mid-infrared region have proven to be a promising platform for a variety of applications, e.g. vibrational absorption spectroscopy 3 4 and quarz enhanced photoacoustic spectroscoppy 5 6 7 8 . QCLs show stable long term frequency stability appropriate for spectroscopy after an initial stabilization of the electric contacts 9 .…”
mentioning
confidence: 99%