Abstract. We describe the first high precision real-time analysis of the N 2 O site-specific isotopic composition at ambient mixing ratios. Our technique is based on mid-infrared quantum cascade laser absorption spectroscopy (QCLAS) combined with an automated preconcentration unit. The QCLAS allows for simultaneous and specific analysis of the three main stable N 2 O isotopic species, 14 N 15 N 16 O, 15 N 14 N 16 O, 14 N 14 N 16 O, and the respective site-specific relative isotope ratio differences δ 15 N α and δ 15 N β . Continuous, stand-alone operation is achieved by using liquid nitrogen free N 2 O preconcentration, a quasi-room-temperature quantum cascade laser (QCL), quantitative sample transfer to the QCLAS and an optimized calibration algorithm. The N 2 O site-specific isotopic composition (δ 15 N α and δ 15 N β ) can be analysed with a long-term precision of 0.2 ‰. The potential of this analytical tool is illustrated by continuous N 2 O isotopomer measurements above a grassland plot over a three week period, which allowed identification of microbial source and sink processes.