Platelet-derived growth factor (PDGF) stimulates density-arrested BALB/c-3T3 cells to synthesize MEP, a lysosomal protein. This enhanced synthesis appears to be largely regulated by the PDGF-modulated accumulation of MEP mRNA, a 1.8-kilobase species. The increase in the MEP transcript, which is dependent on the PDGF concentration, begins 3 to 4 h after PDGF addition and is maximal at 12 h. The accumulation of the MEP transcript is growth-factor specific: PDGF and the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, an agent which acts like PDGF, induce MEP RNA accumulation, whereas epidermal growth factor, somatomedin C, insulin, and whole plasma do not. A spontaneously transformed BALB/c-3T3 cell line (ST2-3T3), which does not require PDGF for growth, optimally expresses MEP RNA in the absence of PDGF. The PDGF-modulated increase in MEP RNA is unlike PDGF-modulated c-myc and c-fos RNA accumulation because it is blocked by cycloheximide, suggesting a requirement for de novo protein synthesis. It appears that PDGF modulates a program of gene expression with the accumulation of some transcripts, typified by MEP, being dependent upon the translation of others.