2020
DOI: 10.1016/j.jlumin.2019.117008
|View full text |Cite
|
Sign up to set email alerts
|

Luminescence of colloidal Ag2S/ZnS core/shell quantum dots capped with thioglycolic acid

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
10
0
3

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 20 publications
(13 citation statements)
references
References 58 publications
0
10
0
3
Order By: Relevance
“…Для достижения однородности коллоидного раствора после смешивания прекурсоров реакционную смесь выдерживали 3 h при температуре 25 • C и постоянном перемешивании (300 rpm). Концентрационное соотношение прекурсоров AgNO 3 и Na 2 S обеспечивает формирование коллоидных КТ Ag 2 S средним размером в диапазоне от 2 до 3 nm [26,27]. Используемая концентрация кремнеземного лиганда оценивалась по размеру молекулы 3-MPTMS (∼ 0.7 nm) [28], что предполагает формирование слоя SiO 2 на поверхности КТ Ag 2 S в диапазоне от 3 до 5 nm.…”
Section: материалы и методы исследованияunclassified
See 2 more Smart Citations
“…Для достижения однородности коллоидного раствора после смешивания прекурсоров реакционную смесь выдерживали 3 h при температуре 25 • C и постоянном перемешивании (300 rpm). Концентрационное соотношение прекурсоров AgNO 3 и Na 2 S обеспечивает формирование коллоидных КТ Ag 2 S средним размером в диапазоне от 2 до 3 nm [26,27]. Используемая концентрация кремнеземного лиганда оценивалась по размеру молекулы 3-MPTMS (∼ 0.7 nm) [28], что предполагает формирование слоя SiO 2 на поверхности КТ Ag 2 S в диапазоне от 3 до 5 nm.…”
Section: материалы и методы исследованияunclassified
“…Используемая концентрация кремнеземного лиганда оценивалась по размеру молекулы 3-MPTMS (∼ 0.7 nm) [28], что предполагает формирование слоя SiO 2 на поверхности КТ Ag 2 S в диапазоне от 3 до 5 nm. Более высокие концентрации способствуют слипанию КТ Ag 2 S в агломераты [26][27][28][29]. Центрифугирование КТ Ag 2 S/SiO 2 и повторное растворение в дистиллированной воде позволяет избавиться от продуктов реакции, а также излишка молекул 3-MPTMS, тем самым останавливая рост оболочки SiO 2 .…”
Section: материалы и методы исследованияunclassified
See 1 more Smart Citation
“…To achieve homogeneity of colloidal solution, after mixing of precursors, the reaction mix was maintained for 3 h at 25 • C and continuous mixing (300 rpm). Concentration ratio of precursors AgNO 3 and Na 2 S provides for generation of colloidal QPs Ag 2 S with average size in the range from 2 to 3 nm [26,27]. The used concentration of silicic ligand was assessed by size of molecule 3-MPTMS (∼ 0.7 nm) [28], which suggests generation of layer SiO 2 on surface of QP Ag 2 S in the range from 3 to 5 nm.…”
Section: Materials and Research Techniquesmentioning
confidence: 99%
“…Recent advances in InP synthesis include the development of novel synthetic schemes that drive down the cost and environmental impact of InP synthesis while also improving photophysical performance. These Type I and Quasi-Type II InP QDs exhibit high quantum yields with reasonably narrow emission peak full width half maximums (FWHM <40 nm), , but do not emit throughout the first optical tissue window; reported emission peaks for colloidal InP are all below 750 nm, regardless of synthesis method. , Indium phosphide cores with cadmium sulfide or cadmium selenide shells emit at wavelengths >1000 nm, but the Type II band alignment of these structures coincides with longer photoluminescence lifetimes and lower quantum yields in addition to the unfortunate inclusion of cadmium. In order to address the shortcomings of InP tunability in the NIR, copper-doped InP and ternary systems such as copper indium sulfide have been developed. These systems exhibit dopant-based NIR emission, but this emission mechanism is thought to inherently limit the maximum brightness of the emitters and increase the emission peak width. Alternative NIR-emitting QD structures continue to be developed, including Ag 2 S and Ag 2 Se, which can exhibit narrow PL across the visible and NIR-II wavelength ranges. However, despite intensive synthetic efforts, these silver-based systems suffer from comparably low quantum yields and poor photostability, particularly at NIR wavelengths, even when shelled with wide bandgap semiconductors. Our recent work describing CdSe shell emission demonstrated that lower energy/longer wavelength peak emission was feasible with confinement in the QD shell layer than with the same volume of CdSe in the traditional spherical QD morphology. , Given concerns that a “growth bottleneck” precludes synthesis of InP cores large enough to produce emission peaks spanning the entire NIR emission range theoretically possible for this material, we hypothesized that an InP shell structure may enable lower energy emission than we have observed with InP cores.…”
mentioning
confidence: 99%