In 1981, David Chaum proposed a cryptographic primitive for privacy calledmix network(Mixnet). A mixnet is cryptographic construction that establishes anonymous communication channel through a set of servers. In 2004, Golle et al. proposed a new cryptographic primitive called universal reencryption which takes the input as encrypted messages under the public key of the recipients not the public key of the universal mixnet. In Eurocrypt 2010, Gentry, Halevi, and Vaikunthanathan presented a cryptosystem which is an additive homomorphic and a multiplicative homomorphic for only one multiplication. In MIST 2013, Singh et al. presented a lattice based universal reencryption scheme under learning with error (LWE) assumption. In this paper, we have improved Singh et al.’s scheme using Fairbrother’s idea. LWE is a lattice hard problem for which till now there is no polynomial time quantum algorithm. Wiangsripanawan et al. proposed a protocol for location privacy in mobile system using universal reencryption whose security is reducible to Decision Diffie-Hellman assumption. Once quantum computer becomes a reality, universal reencryption can be broken in polynomial time by Shor’s algorithm. In postquantum cryptography, our scheme can replace universal reencryption scheme used in Wiangsripanawan et al. scheme for location privacy in mobile system.