Chromogranin A (CHGA), a protein participating in the biogenesis of dense core secretory granules in various neuroendocrine tissues, plays a critical role in the release of hormones/peptides and the pathogenesis of pheochromocytoma. However, little is known about the developmental origin of CHGA-expressing cells during embryogenesis. Here, we report the structural characterization and spatiotemporal expression pattern of zebrafish (Danio rerio) ortholog of mammalian CHGA. The earliest expression of chga transcripts was observed at 16 h post fertilization in the developing cranial ganglia as six distinct cellular masses arranged bilaterally as strings of beads in the dorsal root ganglia (DRG) precursors along the dorsal trunk. With development advancing, the chga transcripts were expressed abundantly in diencephalon, mesencephalon, and rhombencephalon as well as in the DRG. Interestingly, double in situ hybridization assay of chga with genes expressed in pronephros (Wilms' tumor suppressor 1, wt1), adrenal cortex (side-chain cleavage enzyme, scc), and sympathoadrenal neuron/chromaffin cell (dopamineb-hydroxylase, dbh), respectively, showed that the chgaexpressing cells are spatially separated from wt1-, scc-, and dbh-positive cell populations during early embryonic development. The pronephros region does not express chga even up to 7 days post fertilization, while chga positive-staining cells bind in the brain and DRG, indicating that chga may play an important role in nervous system development during the early embryonic stages.