Our photoemission study reveals that the work function of TiO 2 (1 1 0) decreases by up to 1.5 eV upon deposition of 9-(bis-(p-(tert-octyl)phenyl)amino)-perylene-3,4-dicarboxylic anhydride (BOPA-PDCA). This effect is attributed to a chemical reaction of TiO 2 (1 1 0) and the molecular anhydride group, as well as the molecular dipole. Analysis of the film thickness dependent photoemission and metastable atom electron spectroscopy data reveals that for low coverage the perylene backbone of BOPA-PDCA is almost parallel to the substrate surface and higher coverage leads to an orientational transition to essentially upright standing molecules. Comparing the energylevel alignment between TiO 2 (1 1 0) and the hole transport materials N,N′-bis(1-naphthyl)-N,N′diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) without and with the BOPA-PDCA interlayer, we find that the perylene derivative has a positive impact on the level alignment for dye-sensitized solar cells with high open-circuit voltages.