Recent STM molecular break-junction experiments have revealed multiple series of peaks in the conductance histograms of alkanedithiols. To resolve a current controversy, we present here an in-depth study of charge transport properties of Au|alkanedithiol|Au junctions. Conductance histograms extracted from our STM measurements unambiguously confirm features showing more than one set of junction configurations. On the basis of quantum chemistry calculations, we propose that certain combinations of different sulfur-gold couplings and trans/gauche conformations act as the driving agents. The present study may have implications for experimental methodology: whenever conductances of different junction conformations are not statistically independent, the conductance histogram technique can exhibit a single series only, even though a much larger abundance of microscopic realizations exists.
Perylene imides have been an object of research for 100 years and their derivatives are key n-type semiconductors in the field of organic electronics. While perylene diimides have been applied in many electronic and photonic devices, their use can be traced back to the first efficient organic solar cell. By functionalizing different positions of the in total 12 positions (four peri, four bay, and four ortho-positions) on the perylene core, perylene imides with significantly different optical, electronic and morphological properties may be prepared. Perylene imides and their derivatives have been used in several types of organic photovoltaics, including flat-, and bulk-heterojunction devices as well as dye-sensitized solar cells. Additionally perylene imides-based copolymers or oligomers play an important role in single junction devices. In this review, the relationship between the photovoltaic performance and the structure of perylene imides is discussed.
Single-layer transition-metal dichalcogenides (TMDs) receive significant attention due to their intriguing physical properties for both fundamental research and potential applications in electronics, optoelectronics, spintronics, catalysis, and so on. Here, we demonstrate the epitaxial growth of high-quality single-crystal, monolayer platinum diselenide (PtSe2), a new member of the layered TMDs family, by a single step of direct selenization of a Pt(111) substrate. A combination of atomic-resolution experimental characterizations and first-principle theoretic calculations reveals the atomic structure of the monolayer PtSe2/Pt(111). Angle-resolved photoemission spectroscopy measurements confirm for the first time the semiconducting electronic structure of monolayer PtSe2 (in contrast to its semimetallic bulk counterpart). The photocatalytic activity of monolayer PtSe2 film is evaluated by a methylene-blue photodegradation experiment, demonstrating its practical application as a promising photocatalyst. Moreover, circular polarization calculations predict that monolayer PtSe2 has also potential applications in valleytronics.
A novel approach to functionalize graphene with large aromatic donor and acceptor molecules consisting of nanographene units is presented, producing an unprecedented class of graphene and nanographene composites with tunable electronic properties. The stability of aqueous dispersion of graphene sheets is greatly enhanced, and a large number of monolayer and double‐layer graphene sheets could be facilely fabricated on the substrates
The desert-dwelling sandfish (Scincus scincus) moves within dry sand, a material that displays solid and fluidlike behavior. High-speed x-ray imaging shows that below the surface, the lizard no longer uses limbs for propulsion but generates thrust to overcome drag by propagating an undulatory traveling wave down the body. Although viscous hydrodynamics can predict swimming speed in fluids such as water, an equivalent theory for granular drag is not available. To predict sandfish swimming speed, we developed an empirical model by measuring granular drag force on a small cylinder oriented at different angles relative to the displacement direction and summing these forces over the animal movement profile. The agreement between model and experiment implies that the noninertial swimming occurs in a frictional fluid.
C shells: A facile and versatile synthesis using dopamine as a carbon source gives hollow carbon spheres and yolk–shell Au@Carbon nanocomposites (see pictures). The uniform nature of dopamine coatings and their high carbon yield endow the products with high structural integrity. The Au@C nanocomposites are catalytically active.
SUMMARY
Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research.
In this study, we report an inexpensive, massively scalable, fast, and facile method for preparation of graphene oxide and reduced graphene oxide nanoplatelets. The basic strategy involved the preparation of graphite oxide (GO) from graphite through reaction with benzoyl peroxide (BPO), complete exfoliation of GO into graphene oxide sheets, followed by their in situ reduction to reduced graphene oxide nanoplatelets. The mechanism of graphene oxide producing is mainly the generation of oxygencontaining groups on graphene sheets. In addition, inserted BPO and expansion of CO 2 evolved during reaction will expand the distance between graphite layers, which are also main factors for exfoliation. Thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy indicated the successful preparation of GO. X-ray diffraction proved the mechanism of intercalation and exfoliation of graphite. Transmission electron microscopy and atomic force microscopy were used to demonstrate the structure of produced graphene oxide and reduced graphene oxide nanoplatelets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.