Bevacizumab treatment of glioblastoma is limited by transient responses and acquired resistance. Because of the lengthy duration of treatment that can precede resistance in patients, in order to study changes underlying the evolution of bevacizumab resistance, we created a novel multigenerational xenograft model of acquired bevacizumab resistance. Glioblastoma xenografts were treated with bevacizumab or IgG, and the fastest growing tumor reimplanted into new mice, generating paired isogeneic responsive or resistant multigenerational xenografts. Microarray analysis revealed significant overexpression across generations of the mesenchymal subtype gene signature, paralleling results from patient bevacizumab-resistant gliobalstomas (BRGs) that exhibited increasing mesenchymal gene expression correlating with increased bevacizumab treatment duration. Key mesenchymal markers, including YKL-40, CD44, SERPINE1, and TIMP1 were upregulated across generations, with altered morphology, increased invasiveness, and increased neurosphere formation confirmed in later xenograft generations. Interestingly, YKL-40 levels were elevated in serum of patients with bevacizumab-resistant vs. bevacizumab-naïve glioblastomas (52.4 vs. 24.2 ng/mL; P<0.05). Finally, despite upregulation of VEGF-independent pro-angiogenic genes across xenograft generations, immunostaining revealed increased hypoxia and decreased vessel density with increasing generation of treatment, mirroring our findings in patient BRGs and suggesting tumor growth despite effective devascularization caused by VEGF blockade. Besides identifying novel targets for preventing the evolution of resistance and offering a xenograft model for testing resistance inhibitors, our work suggests YKL-40 as a blood biomarker of bevacizumab resistance worthy of further evaluation.