Proteins play a significant role in the key activities of cells. Single-cell protein analysis provides crucial insights in studying cellular heterogeneities. However, the low abundance and enormous complexity of the proteome posit challenges in analyzing protein expressions at the single-cell level. This review summarizes recent advances of various approaches to single-cell protein analysis. We begin by discussing conventional characterization approaches, including fluorescence flow cytometry, mass cytometry, enzyme-linked immunospot assay, and capillary electrophoresis. We then detail the landmark advances of microfluidic approaches for analyzing single-cell protein expressions, including microfluidic fluorescent flow cytometry, droplet-based microfluidics, microwell-based assay (microengraving), microchamber-based assay (barcoding microchips), and single-cell Western blotting, among which the advantages and limitations are compared. Looking forward, we discuss future research opportunities and challenges for multiplexity, analyte, throughput, and sensitivity of the microfluidic approaches, which we believe will prompt the research of single-cell proteins such as the molecular mechanism of cell biology, as well as the clinical applications for tumor treatment and drug development.
This paper presents a microfluidic instrument capable of quantifying single-cell specific intracellular proteins, which are composed of three functioning modules and two software platforms. Under the control of a LabVIEW platform, a pressure module flushed cells stained with fluorescent antibodies through a microfluidic module with fluorescent intensities quantified by a fluorescent module and translated into the numbers of specific intracellular proteins at the single-cell level using a MATLAB platform. Detection ranges and resolutions of the analyzer were characterized as 896.78–6.78 × 105 and 334.60 nM for Alexa 488, 314.60–2.11 × 105 and 153.98 nM for FITC, and 77.03–5.24 × 104 and 37.17 nM for FITC-labelled anti-beta-actin antibodies. As a demonstration, the numbers of single-cell beta-actins of two paired oral tumor cell types and two oral patient samples were quantified as: 1.12 ± 0.77 × 106/cell (salivary adenoid cystic carcinoma parental cell line (SACC-83), ncell = 13,689) vs. 0.90 ± 0.58 × 105/cell (salivary adenoid cystic carcinoma lung metastasis cell line (SACC-LM), ncell = 15,341); 0.89 ± 0.69 × 106/cell (oral carcinoma cell line (CAL 27), ncell = 7357) vs. 0.93 ± 0.69 × 106/cell (oral carcinoma lymphatic metastasis cell line (CAL 27-LN2), ncell = 6276); and 0.86 ± 0.52 × 106/cell (patient I) vs. 0.85 ± 0.58 × 106/cell (patient II). These results (1) validated the developed analyzer with a throughput of 10 cells/s and a processing capability of ~10,000 cells for each cell type, and (2) revealed that as an internal control in cell analysis, the expressions of beta-actins remained stable in oral tumors with different malignant levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.