2019
DOI: 10.1007/s11139-019-00183-8
|View full text |Cite
|
Sign up to set email alerts
|

Linear independence of harmonic numbers over the field of algebraic numbers II

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4

Relationship

2
2

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 8 publications
0
2
0
Order By: Relevance
“…The following is the lemma: Lemma For any divisor b of q>1$q>1$ and x=1,2,,q1$x=1, 2, \ldots , q-1$, logsin()bxπq=(b1)log20.33em+u=1ux(modq/b)q1logsin()uπq.\begin{equation} \log \sin {\left(\frac{bx \pi }{q}\right)}= (b-1) \log 2 \ + \sum \limits _{\substack{u=1 \\ u \equiv x \text{ (mod } q/b)}}^{q-1} \log \sin {\left(\frac{u \pi }{q}\right)}. \end{equation}For a proof, see [2, Lemma 3.9] and [4, Remark 3.4]).…”
Section: Proofs Of the Main Theoremsmentioning
confidence: 99%
“…The following is the lemma: Lemma For any divisor b of q>1$q>1$ and x=1,2,,q1$x=1, 2, \ldots , q-1$, logsin()bxπq=(b1)log20.33em+u=1ux(modq/b)q1logsin()uπq.\begin{equation} \log \sin {\left(\frac{bx \pi }{q}\right)}= (b-1) \log 2 \ + \sum \limits _{\substack{u=1 \\ u \equiv x \text{ (mod } q/b)}}^{q-1} \log \sin {\left(\frac{u \pi }{q}\right)}. \end{equation}For a proof, see [2, Lemma 3.9] and [4, Remark 3.4]).…”
Section: Proofs Of the Main Theoremsmentioning
confidence: 99%
“…In section 3, we will study about the arithmetic nature of harmonic numbers H r and their linear independence over the field of algebraic numbers. In a forth coming paper [3], we study these problems for a more general class of Harmonic numbers.…”
Section: Introductionmentioning
confidence: 99%