2019
DOI: 10.1007/s11139-018-0124-6
|View full text |Cite
|
Sign up to set email alerts
|

Linear independence of harmonic numbers over the field of algebraic numbers

Abstract: Let H n = n k=1 1 k be the n-th harmonic number. Euler extended it to complex arguments and defined H r for any complex number r except for the negative integers. In this paper, we give a new proof of the transcendental nature of H r for rational r. For some special values of q > 1, we give an upper bound for the number of linearly independent harmonic numbers H a/q with 1 ≤ a ≤ q over the field of algebraic numbers. Also, for any finite set of odd primes J with |J| = n, defineFinally, we show that

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…The following is the lemma: Lemma For any divisor b of q>1$q>1$ and x=1,2,,q1$x=1, 2, \ldots , q-1$, logsin()bxπq=(b1)log20.33em+u=1ux(modq/b)q1logsin()uπq.\begin{equation} \log \sin {\left(\frac{bx \pi }{q}\right)}= (b-1) \log 2 \ + \sum \limits _{\substack{u=1 \\ u \equiv x \text{ (mod } q/b)}}^{q-1} \log \sin {\left(\frac{u \pi }{q}\right)}. \end{equation}For a proof, see [2, Lemma 3.9] and [4, Remark 3.4]).…”
Section: Proofs Of the Main Theoremsmentioning
confidence: 99%
“…The following is the lemma: Lemma For any divisor b of q>1$q>1$ and x=1,2,,q1$x=1, 2, \ldots , q-1$, logsin()bxπq=(b1)log20.33em+u=1ux(modq/b)q1logsin()uπq.\begin{equation} \log \sin {\left(\frac{bx \pi }{q}\right)}= (b-1) \log 2 \ + \sum \limits _{\substack{u=1 \\ u \equiv x \text{ (mod } q/b)}}^{q-1} \log \sin {\left(\frac{u \pi }{q}\right)}. \end{equation}For a proof, see [2, Lemma 3.9] and [4, Remark 3.4]).…”
Section: Proofs Of the Main Theoremsmentioning
confidence: 99%