Genetic risk prediction is an important problem in human genetics, and accurate prediction can facilitate disease prevention and treatment. Calculating polygenic risk score (PRS) has become widely used due to its simplicity and effectiveness, where only summary statistics from genome-wide association studies are needed in the standard method. Recently, several methods have been proposed to improve standard PRS by utilizing external information, such as linkage disequilibrium and functional annotations. In this paper, we introduce EB-PRS, a novel method that leverages information for effect sizes across all the markers to improve prediction accuracy. Compared to most existing genetic risk prediction methods, our method does not need to tune parameters nor external information. Real data applications on six diseases, including asthma, breast cancer, celiac disease, Crohn's disease, Parkinson's disease and type 2 diabetes show that EB-PRS achieved 307.1%, 42.8%, 25.5%, 3.1%, 74.3% and 49.6% relative improvements in terms of predictive r 2 over standard PRS method with optimally tuned parameters. Besides, compared to LDpred that makes use of LD information, EB-PRS also achieved 37.9%, 33.6%, 8.6%, 36.2%, 40.6% and 10.8% relative improvements. We note that our method is not the first method leveraging effect size distributions. Here we first justify our method by presenting theoretical optimal property over existing methods in this class of methods, and substantiate our theoretical result with extensive simulation results. The R-package EBPRS that implements our method is available on CRAN.
Author summaryGenetic risk prediction is of considerable importance in human genetics. Calculating polygenic risk score (PRS) is the most commonly used approach due to its simplicity as well as the computational efficiency. Many PRS calculation methods have been proposed for accurate prediction by borrowing information from external panels or datasets. Here, instead of external information, we propose a novel PRS method leveraging internal PLOS Computational Biology | https://doi.