2006
DOI: 10.1016/j.mechmat.2005.05.011
|View full text |Cite
|
Sign up to set email alerts
|

Large-scale simulation of crack propagation based on continuum damage mechanics and two-step mesh partitioning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2013
2013
2013
2013

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 26 publications
0
1
0
Order By: Relevance
“…Considering the rapid development of multicore processors in recent years, parallel computing has been increasingly used in solving eigenstrains and related problems, such as dislocation dynamics [19], crack propagation [20], and composite materials [21]. To employ parallel computing, a large problem is divided into smaller independent components, where each processor executes its own part of the algorithm simultaneously, leading to a significant increase in computational speed; and the theoretical maximum acceleration can be predicted by Amdahl's law [22].…”
Section: Introductionmentioning
confidence: 99%
“…Considering the rapid development of multicore processors in recent years, parallel computing has been increasingly used in solving eigenstrains and related problems, such as dislocation dynamics [19], crack propagation [20], and composite materials [21]. To employ parallel computing, a large problem is divided into smaller independent components, where each processor executes its own part of the algorithm simultaneously, leading to a significant increase in computational speed; and the theoretical maximum acceleration can be predicted by Amdahl's law [22].…”
Section: Introductionmentioning
confidence: 99%