2020
DOI: 10.3233/faia200709
|View full text |Cite
|
Sign up to set email alerts
|

LAR: A User Behavior Prediction Model in Server Log Based on LSTM-Attention Network and RSC Algorithm

Abstract: Using server log data to predict the URLs that a user is likely to visit is an important research area in user behavior prediction. In this paper, a predictive model (called LAR) based on the long short-term memory (LSTM) attention network and reciprocal-nearest-neighbors supported clustering algorithm (RSC) for predicting the URL is proposed. First, the LSTM-attention network is used to predict the URL categories a user might visit, and the RSC algorithm is then used to cluster users. Subsequently, the URLs b… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?