Specialty chemicals industry relies on batch manufacturing, since it requires the frequent adaptation of production systems to market fluctuations. To be first in the market, batch industry requires decision-support systems for the rapid development and implementation of chemical processes. Moreover, the processes should be competitive to ensure their long-term viability.
General-purpose and flexible plants and the consideration of physicochemical insights to define an efficient operation are also cornerstones for the success of specialty chemical industries. Precisely, this thesis tackles the systematic development of batch processes that are efficient, economically competitive, and environmentally friendly, to assist their agile introduction into production systems in grassroots and retrofit scenarios. Synthesis of conceptual processing schemes and plant allocation subproblems are solved simultaneously, taking into account the plant design.
With this purpose, an optimization-based approach is proposed, where all structural alternatives are represented in a State-Equipment Network (SEN) superstructure, following formulated into a Mixed-Logic Dynamic Optimization (MLDO) problem which is later solved to minimize an objective function. Essentially, the strength of the proposed methodology lies in the modeling strategy which combines the different kinds of decisions of the integrated problem in a unique optimization model. Accordingly, it considers: (i) synthesis and allocation alternatives combination, (ii) dynamic process performance models and dynamic control variable profiles, (iii) discrete events associated to transitions of batch phases and operations, (iv) quantitative and qualitative information, (v) material transference synchronization to ensure batch integrity between unit procedures, and (vi) batch and semicontinuous processing elements.
Different strategies can be used to solve the resulting MLDO problem. A deterministic direct-simultaneous approach is first proposed. The mixed-logic problem is reformulated into a mixed-integer one, which is fully-discretized to provide a Mixed-Integer Non-Linear Programming (MINLP) that is optimized using conventional solvers. Then, a Differential Genetic Algorithm (DGA) and a hybrid approach are presented. The purpose of these evolutionary strategies is to pose solution alternatives that keep solution goodness while seek for the improvement of computational efficiency to handle industrial-size problems.
The optimization-based approach is applied in retrofit scenarios to solve the simultaneous process synthesis and plant allocation, taking into account the physical restrictions of existing plant elements. The production of specialty chemicals based on a competitive reactions system in an existing reactor network is first defined through process development and improvement according to different economic scenarios, decision criteria, and plant modifications. Additionally, a photo-Fenton process is optimized to eliminate an emergent wastewater pollutant in a given pilot plant, pursuing the minimization of processing time and cost.
Batch process development in grassroots scenarios is also proven to be a problem of utmost importance to deal with uncertainty in future markets. Seeking for plant flexibility in several demand scenarios, the expected profit is maximized through a two-stage stochastic formulation that includes simultaneous plant design, process synthesis, and plant allocation decisions. A heuristic solution algorithm is used to handle the problem complexity. A grassroots plant design is defined to implement the previous competitive reaction system, where decisions like the feed-forward trajectories or operating modes allow the adaptation of master recipes to different demands. Finally, an acrylic fiber production example is presented to illustrate process development decisions like the selection of tasks, technological alternatives, chemicals, and solvent reuse.
La indústria de productes químics especials es basa en la fabricació discontinua, ja que permet adaptar de forma freqüent els sistemes de producció en funció de les fluctuacions de mercat. Per ser líder al sector, són necessàries eines de suport a la decisió que ajudin a
l’àgil desenvolupament i implementació de nous processos. A més, aquests han de ser competitius per garantir la seva viabilitat a llarg termini. Altres peces clau per una operació eficient són l’ús de plantes flexibles així com l’estudi dels fenòmens fisicoquímics. Aquesta tesis aborda justament el desenvolupament sistemàtic de processos químics discontinus que siguin eficients, econòmicament competitius i ecològics, per contribuir a la seva ràpida introducció en els sistemes de producció, tant en escenaris de plantes existents com des de les bases. En concret, es planteja la resolució simultània de la síntesi conceptual d’esquemes de procés i l’assignació d’equips, tenint en compte el disseny de la planta.
Amb aquest objectiu, es proposa una metodologia de solució basada en optimització, on les alternatives estructurals es representen en una Xarxa d’Estats i Equips (SEN per les sigles en anglès) que es formula mitjançant un problema d’Optimització Dinàmica Mixta-Lògica (MLDO per les sigles en anglès) que es resol minimitzant una funció objectiu.
La solidesa de la metodologia proposada rau en la estratègia de modelat del problema MLDO, que integra els diferents tipus de decisions en un sol model d’optimització. En concret, es consideren: (i) la combinació d’alternatives de síntesi i assignació d’equips, (ii) models de procés i trajectòries de control dinàmics, (iii) esdeveniments discrets associats al canvi de fase i operació, (iv) informació quantitativa i qualitativa, (v) sincronització de
transferències de material en tasques consecutives, i (vi) elements de processat discontinus i semi-continus.
Existeixen diverses estratègies per resoldre el problema MLDO resultant. En aquesta tesi es proposa en primer lloc un mètode determinístic directe-simultani, on el model mixt-lògic es transforma en un mixt-enter. Aquest es discretitza al seu torn de forma completa per obtenir un problema de Programació No-Lineal Mixta-Entera (MINLP per les sigles en anglès) el qual es pot resoldre utilitzant algoritmes d’optimització convencionals. A més, es presenten un Algoritme Genètic Diferencial (DGA per les sigles en anglès) i un mètode híbrid. Totes dues estratègies esdevenen alternatives de cerca amb l’objectiu de mantenir la bondat de la solució i millorar l’eficàcia de computació per tractar problemes
de dimensió industrial.
La metodologia de solució proposada s’aplica al desenvolupament de processos discontinus en escenaris de plantes existents, tenint en compte les restriccions físiques dels equips. Un primer exemple aborda la manufactura de productes químics basada en un sistema de reaccions competitives. Concretament, es desenvolupa i millora el procés de producció implementat en una xarxa de reactors considerant diferents escenaris econòmics, criteris de decisió, i modificacions de planta. En un segon exemple, s’optimitza el procés foto-Fenton per ser executat en una planta pilot per eliminar contaminants emergents.
Buscant integrar el desenvolupament de procés i el disseny de plantes flexibles en escenaris de base, es presenta una formulació estocàstica en dues etapes per a optimitzar el benefici esperat d’acord a diversos escenaris de demanda. Per gestionar la complexitat d’aquest problema es proposa la utilització d’una heurística. Com a exemple, es planteja el disseny d’una planta de base on implementar l’anterior sistema de reaccions competitives.
Decisions com les trajectòries dinàmiques de control o la configuració d’equips permeten adaptar la recepta màster en funció de la demanda. Un darrer exemple defineix el procés de producció de fibra acrílica, il·lustrant decisions com la selecció de tasques, tecnologia, reactius o reutilització de dissolvents.
La industria productos químicos especiales se basa en la fabricación discontinua, la cual permite la adaptación frecuente de los sistemas de producción en función de las fluctuaciones de mercado. Para ser líder en el sector, son necesarias herramientas de soporte a la decisión que contribuyan al ágil desarrollo e implementación de nuevos procesos. Además, éstos deben ser competitivos para garantizar su viabilidad a largo plazo. Otras piezas clave para una operación eficiente son la utilización de plantas flexibles y el estudio de los fenómenos fisicoquímicos. Esta tesis aborda justamente el desarrollo sistemático de procesos químicos discontinuos que sean eficientes, económicamente competitivos y ecológicos, para contribuir a su rápida introducción en los sistemas de producción, ya sea en escenarios de plantas existentes o desde las bases. En particular, se plantea la resoluciónsimultánea de la síntesis conceptual de esquemas de proceso y la asignación de equipos, teniendo en cuenta además el diseño de planta.Con este fin, se propone una metodología de solución basada en optimización, donde todas las alternativas estructurales se representan en una Red de Estados y Equipos (SENpor sus siglas en inglés) que se formula mediante un problema de Optimización Dinámica Mixta-Lógica (MLDO por sus siglas en inglés) que se resuelve minimizando una función objetivo. La solidez de la metodología propuesta reside en la estrategia de modelado delproblema MLDO, que integra los diferentes tipos de decisiones en un solo modelo de optimización. En concreto, se consideran: (i) la combinación de alternativas de síntesis y asignación de equipos, (ii) modelos de proceso y trayectorias de control dinámicos, (iii)eventos discretos asociados al cambio de fase y operación, (iv) información cuantitativa y cualitativa, (v) sincronización de la transferencia de material en tareas consecutivas, y(vi) elementos de procesado discontinuos y semicontinuos.Existen diversas estrategias para resolver el problema MLDO resultante. En esta tesis se propone en primer lugar un método determinístico directo-simultáneo, donde el problema mixto-lógico se reformula en un mixto-entero. A su vez, éste se discretiza de formacompleta para obtener un problema de Programación No-Lineal Mixta-Entera (MINLP por sus siglas en inglés) el cual se puede resolver mediante algoritmos de optimización convencionales. Además, se presentan un Algoritmo Genético Diferencial (DGA por sussiglas en inglés) y un método híbrido. Ambas estrategias se plantean como alternativas de búsqueda con objeto de mantener la bondad de la solución y mejorar la eficacia de computación para tratar problemas de dimensión industrial.La metodología de solución propuesta se aplica al desarrollo de procesos discontinuos en escenarios con plantas existentes, teniendo en cuenta las restricciones físicas de los equipos. Un primer ejemplo aborda la fabricación de productos químicos basada en un sistema de reacciones competitivas. En concreto, se desarrolla y mejora el proceso de producción a implementar en una red de reactores considerando diferentes escenarios económicos, criterios de decisión, y modificaciones de planta. En un segundo ejemplo,se optimiza el proceso foto-Fenton a ser ejecutado en una planta piloto para eliminar contaminantes emergentes.Persiguiendo la integración del desarrollo de proceso con el diseño de plantas flexi-bles en escenarios base, se presenta asimismo una formulación estocástica en dos etapas para optimizar el beneficio esperado de acuerdo a varios escenarios de demanda. Paramanejar la complejidad de dicho problema se propone la utilización de una heurística.Como ejemplo, se plantea el diseño de una planta de base para implementar el anterior sistema de reacciones competitivas, donde decisiones como las trayectorias dinámicas de control o la configuración de equipos permiten adaptar la receta máster en función de lademandas. Por último, se presenta un ejemplo donde se define el proceso de producción de fibra acrílica, ilustrando decisiones como la selección de tareas, alternativas tecnológicas, reactivos químicos o la reutilización de disolventes.