Although portable music devices are useful for passing time on trains, exposure to music using headphones for long periods carries the risk of damaging hearing acuity. The aim of this study is to examine the listening level of music through headphones in the noisy environment of a train car. Eight subjects adjusted the volume to an optimum level (L(music)) in a simulated noisy train car environment. In Experiment I, the effects of noise level (L(train)) and type of train noise (rolling, squealing, impact, and resonance) were examined. Spectral and temporal characteristics were found to be different according to the train noise type. In Experiment II, the effects of L(train) and type of music (five vocal and five instrumental music) were examined. Each music type had a different pitch strength and spectral centroid, and each was evaluated by φ(1) and W(φ(0)), respectively. These were classified as factors of the autocorrelation function (ACF) of the music. Results showed that L(music) increased as L(train) increased in both experiments, while the type of music greatly influenced L(music). The type of train noise, however, only slightly influenced L(music). L(music) can be estimated using L(train) and the ACF factors φ(1) and W(φ(0)).