Biomechanics in Applications 2011
DOI: 10.5772/21238
|View full text |Cite
|
Sign up to set email alerts
|

Investigation of the Unsteady Mechanism in the Generation of Propulsive Force While Swimming Using a Synchronized Flow Visualization and Motion Analysis System

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
5
0
1

Year Published

2012
2012
2018
2018

Publication Types

Select...
4
2
1

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(6 citation statements)
references
References 12 publications
0
5
0
1
Order By: Relevance
“…By adding this circulation to the moving velocity, the surface velocity increases, the surface pressure decreases and a lift force is produced (lower panel in Figure 11 ). This phenomenon has been confirmed by experiments which measured the velocity field during front crawl with 3D motion analysis (Matsuuchi & Muramatsu, 2011 ); thus, excellent swimmers also gain propulsion from this unsteady lift force.…”
Section: Integration Of Knowledge In Front Crawl Analysesmentioning
confidence: 58%
See 1 more Smart Citation
“…By adding this circulation to the moving velocity, the surface velocity increases, the surface pressure decreases and a lift force is produced (lower panel in Figure 11 ). This phenomenon has been confirmed by experiments which measured the velocity field during front crawl with 3D motion analysis (Matsuuchi & Muramatsu, 2011 ); thus, excellent swimmers also gain propulsion from this unsteady lift force.…”
Section: Integration Of Knowledge In Front Crawl Analysesmentioning
confidence: 58%
“…The results obtained reveal that when the hand orientation was changed rapidly, vortex generation and shedding were observed, and thereby the momentum changes were detected in the flow field. Such vortex behaviour might contribute to the generation of thrust (Matsuuchi & Muramatsu, 2011 ). In addition to the front crawl, Kamata, Miwa, Matsuuchi, Shintani, and Nomura ( 2006 ) attempted to demonstrate the flow field during sculling movements and concluded that after the change in the direction of the hand motion, a pair of vortices formed with a jet flow induced between the vortices.…”
Section: Particle Image Velocimetry (Piv)mentioning
confidence: 99%
“…Observations and numerical simulations have improved markedly in recent years, but it is now necessary to quantify and classify, at least in statistical terms turbulent descriptors related to propulsive efficiency, for example the shear length-scale at a certain distance from the hand wake ( or the kick in UUS as discussed above). A possible definition is LSi = V / (dV/dxi)max for local wake profiles from hand, feet or the whole body ( [18][19][20][21][22]). For microstructure measurements, either from micro probes of velocity or pressure [4,20].…”
Section: Drag and Lift In Hand Experiments And Numerical Simulationsmentioning
confidence: 99%
“…For microstructure measurements, either from micro probes of velocity or pressure [4,20]. The full power of flow visualization, yet has to be transferred from the laboratory [22] to the swimming pool [4] but measurements of momentum and vorticity fluxes and power law relationships for different types of propulsion are under way. Two examples on hand propulsion and on vortex filament observations will be discussed next: Figure 4 show some of the definitions used by Redondo and Cano (1979) to evaluate Forces produced by swimmers hands [20], in a recirculating water tank the drag coefficient of a hand model was seen to depend strongly on the local Reynolds number [18] as seen in figure 5, lift was also measured and compared with other authors [15,16] but soon it was apparent that the unsteadiness of the process could only be quantified by looking at the fluid wakes.…”
Section: Drag and Lift In Hand Experiments And Numerical Simulationsmentioning
confidence: 99%
“…γύρω από τα άνω άκρα και ιδιαίτερα γύρω από το άκρο χέρι. Η ποσοτική ανάλυση της ασταθούς (unsteady) συμπεριφοράς του νερού γύρω από τα προωθητικά μέλη του σώματος και η εκτίμηση των δυνάμεων που αναπτύσσονται λόγω της δημιουργίας στροβίλων στο νερό, παρόλο που είναι μια τεχνική που έχει αναπτυχθεί τα τελευταία χρόνια κάτω από ελεγχόμενες εργαστηριακές συνθήκες ροής του νερού (Particle Image Velocimetry, PIV), είναι ιδιαίτερα δύσκολο να εφαρμοστεί κατά τη διάρκεια κανονικής κολύμβησης σε μια πισίνα και έχει πάρα πολλούς περιορισμούς(Arellano et al, 2006;Matsuuchi & Muramatsu, 2011).Για την εκτίμηση της κλίσης του κορμού, που υπολογίστηκε ως η γωνία του άξονα «δεξιός ώμος -δεξιό ισχίο με τον οριζόντιο άξονα, θα πρέπει να επισημανθεί ότι αξιολογήθηκε μόνο κατά τη διάρκεια της υποβρύχιας φάσης της δεξιάς χεριάς, ενώ δεν που ενδεχομένως να αποτελεί πηγή σφάλματος για τις συντεταγμένες του ώμου και κατ' επέκταση της κλίσης του κορμού.Επιπρόσθετα στους προαναφερόμενους περιορισμούς, θα πρέπει να σημειωθεί ότι το δείγμα της παρούσας μελέτης ήταν σχετικά μικρό και οι συμμετέχοντες ήταν μόνο κολυμβήτριες μέτριου επιπέδου απόδοσης, ενώ αξιολογήθηκε μόνο το ελεύθερο στυλ κολύμβησης. Συνεπώς σε μελλοντικές έρευνες θα μπορούσε να χρησιμοποιηθεί ένα μεγαλύτερο δείγμα, το οποίο να αποτελείται και από άντρες κολυμβητές, ενδεχομένως υψηλότερου αγωνιστικού επιπέδου, όπου να συμπεριληφθούν και τα υπόλοιπα κολυμβητικά στυλ (ύπτιο, πρόσθιο, πεταλούδα), έτσι ώστε τα ευρήματα να μπορούν να γενικευθούν για μεγαλύτερο πληθυσμό.VI.…”
unclassified