Thymidine glycol (Tg), which is also known as 5,6-dihydroxy-5,6-dihydrothymidine, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) are two major types of DNA damage products induced by reactive oxygen species (ROS). Here we report the synthesis of oligodeoxyribonucleotides (ODNs) containing both Tg and 8-oxodG. The dual incorporation of the two single-base lesions was achieved by using a phosphoramidite building block of 8-oxodG with ultramild base protecting group and a building block of Tg whose nucleobase hydroxyl groups were protected with acetyl functionality. The availability of ODNs carrying neighboring 8-oxodG and Tg provided authentic substrates for assessing the formation and examining the replication and repair of this kind of tandem lesions. In addition, thermodynamic parameters derived from melting temperature data revealed that tandem lesions destabilized the double helix to a greater extent than either of the two single-base lesions alone. The thermodynamic results could offer a basis for understanding the repair of the tandem base lesions.