Water spray cooling is widely used in many industrial processes to control the surface dissipation of a material ported at high temperatures. To predict heat transfer and obtain the rate of required temperature distributions of the surface, it is necessary to understand the basic spray cooling dynamics and a more precise estimation of the heat transfer rate. This paper is about a three-dimensional simulation to estimate the transient heat transfer obtained locally by water spray to reduce the temperature of heated metal. The use of water spraying is a practical and flexible process. It is possible to vary, in space, time, and in large proportions the flux of extracted heat and controls the density of the flow of water which is a key element and very simple to achieve. Globally, the aim of this study is to simulate the spray cooling of different metal slabs for various alloys (steel, cast iron, titanium, nickel) by mainly comparing cooling in maps of iso-surfaces and in curves (at starts and globally) obtained after estimation of the heat flux.