2018
DOI: 10.15407/mfint.40.12.1649
|View full text |Cite
|
Sign up to set email alerts
|

Influence of Copper Pretreatment on the Phase and Pore Formations in the Solid Phase Reactions of Copper with Tin

Abstract: The solid-phase reactions of copper with tin are considered, and the porosity of the reaction products depending on the pretreatment of the copper substrate is investigated. Copper substrates for the reaction are prepared by electrodeposition of copper layers with thickness of up to 100 microns on the rolled copper plates. The defects of substrates are determined by the different modes of electrodeposition-stationary, reversible, and stochastic ones. As shown, the thicknesses of the intermediate phases, their … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2019
2019
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 20 publications
(25 reference statements)
0
2
0
2
Order By: Relevance
“…Besides, one of the most common reasons for chip failure is due to the soldered copper/tin based contacts, that is, the soldered contacts are the weakest part of the chip and this is related, in particular, to intermetallics and the Kirkendall-Frenkel porosity formation in the contact zone [5]. The temperature range is from room temperature up to 250°C (typical range of packaging and operation of the integrated circuits) [6,7].…”
Section: Introductionmentioning
confidence: 99%
“…Besides, one of the most common reasons for chip failure is due to the soldered copper/tin based contacts, that is, the soldered contacts are the weakest part of the chip and this is related, in particular, to intermetallics and the Kirkendall-Frenkel porosity formation in the contact zone [5]. The temperature range is from room temperature up to 250°C (typical range of packaging and operation of the integrated circuits) [6,7].…”
Section: Introductionmentioning
confidence: 99%
“…Two phases are formed in the Cu-Sn system during isothermal annealing of Cu/Sn samples at temperature T = 200 o C [3,6,9]: ε-phase Cu3Sn (phase 1, C1 ≈ ¾ = 0.753, ∆C1 = 0.012, C = CCu [6]) and η-phase Cu6Sn5 (phase 2, C2 ≈ 6/11 = 0.547, ∆C2 = 0.021, C = CCu [6]), at temperature T = 210 o C [10], and at temperature T = 250 o C (Sn is liquid) [11]. Parabolic growth constants for the layer thicknesses were measured in [6], also the range of homogeneity of each phase were measured, and the values of the mutual diffusion coefficients for the Cu3Sn (phase 1) and Cu6Sn5 (phase 2) phases between 463 K and 493 K (190 o C and 220 o C) were calculated too: [12] or by "constant flux method" (Gurov's and Gusak's method) [13][14][15][16][17][18][19][20][21][22][23] or by other methods [26,[28][29][30] (data are from [6] as an example):…”
Section: I2 the Cu-sn Systemmentioning
confidence: 99%
“…Різні типи обробки приводять до різної шорсткості інтерфейсу, зокрема середню амплітуду та середню довжину «вигинів» майбутньої міжфазної межі. В роботі [3] описано твердофазні реакції міді з оловом та експериментально досліджено пористість продуктів реакції в залежності від попередньої обробки мідної підкладки. Мідні підкладки готувалися шляхом електроосадження прошарків міді товщиною до 100 мкм на прокатних мідних пластинках.…”
Section: вступunclassified
“…Таким чином, результат твердофазних реакцій може залежати від шорсткості початкового інтерфейсу мідь-олово [3]. Одним з методів оцінки впливу шорсткості на структуру контактної зони є проведення чисельного моделювання цих процесів, що дозволяє оцінити структуру та склад дифузійної зони, положення міжфазних меж.…”
Section: вступunclassified