The programmability and replicability of RNA and DNA have respectively enabled the design and selection of a number of allosteric ribozymes and deoxyribozymes. These catalysts have been adapted to function as signal transducers in biosensors and biochemical reaction networks both in vitro and in vivo. However, allosteric control of nucleic acid catalysts is currently limited by the fact that one molecule of effector (input) generally regulates at most one molecule of ribozyme or deoxyribozyme (output). In consequence, allosteric control is usually inefficient when the concentration of input molecules is low. In contrast, catalytic regulation of protein enzymes, as in protein phosphorylation cascades, generally allows one input molecule (e.g., one kinase molecule) to regulate multiple output molecules (e.g., kinase substrates). Achieving such catalytic signal amplification would also be of great utility for nucleic acid circuits. Here we show that allosteric regulation of nucleic acid enzymes can be coupled to signal amplification in an entropy-driven DNA circuit. In this circuit, kinetically trapped DNA logic gates are triggered by a specific sequence, and upon execution generate a peroxidase deoxyribozyme that converts a colorless substrate (ABTS) into a green product (ABTS
•+). This scheme provides a new paradigm for the design of enzyme-free biosensors for point-of-care diagnostics.
FindingsA variety of functional nucleic acids have been engineered over the past two decades, including not only simple binding elements (aptamers [1,2]) and catalysts (ribozymes [3] and deoxyribozymes [4]), but also more 'intelligent' molecular parts, such as aptamer beacons and allosteric ribozymes that can sense biomolecules [5,6], process molecular information [7,8], and regulate biochemical systems [9]. However, most regulatory nucleic acid elements are based on allosteric control, which has a fundamental limitation: one input molecule generally yields only one output molecule. Such stoichiometric or sub-stoichiometric regulation is often insufficient for effective metabolic regulation or diagnostic signal transduction, especially when the concentrations of input molecules are low.In contrast, natural catalytic cascades, such as the phosphorylation of proteins by kinases, readily amplify low input signals. Although in principle ribozymes and deoxyribozymes could participate in similar cascades as catalysts [10][11][12], no generalizable method for implementing such cascades has yet been established. On the other hand, DNA and RNA can catalyze chemical reactions not only by forming intricate tertiary structures, but also by simply forming Watson-Crick base pairs. In fact, by serving as a hybridization template, DNA can control and catalyze a wide range of chemical reactions [13], some of which can yield products capable of regulating downstream reactions. More recently, Zhang and coworkers have designed a scheme for highly efficient, enzyme-free, entropy-driven catalytic reactions that relies only on the dynamic hybrid...