2016
DOI: 10.1177/0885328216661557
|View full text |Cite
|
Sign up to set email alerts
|

In situ thiolated alginate hydrogel: Instant formation and its application in hemostasis

Abstract: An in situ formed hydrogel was synthesized by sodium alginate and cysteine methyl ester, which turned the sodium alginate into thiolated alginate (SA-SH). SA-SH can in situ formed into hydrogel (SA-SS-SA) with a large amount of water through covalent bond in less than 20 s. The structure characterization showed that the mechanism of SA-SH gelation was thiol-disulfide transformation. The rheology and cytotoxicity experiments of SA-SS-SA hydrogel were also investigated, which indicated that SA-SS-SA hydrogel had… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
25
0
2

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 42 publications
(27 citation statements)
references
References 24 publications
0
25
0
2
Order By: Relevance
“…These two characteristic absorbance peaks confirmed the cysteine conjugation on a primary amino group of chitosan backbone. The lower field shift of absorbance peak from 1558 to 1518 cm −1 in modified chitosan confirmed the amide bond formation between the amine group of chitosan and carboxylic group of cysteine amino acid [37] , [38] . Ellman's reagent was used to quantify the conjugated cysteine molecules via sulfhydryl groups.…”
Section: Resultsmentioning
confidence: 63%
“…These two characteristic absorbance peaks confirmed the cysteine conjugation on a primary amino group of chitosan backbone. The lower field shift of absorbance peak from 1558 to 1518 cm −1 in modified chitosan confirmed the amide bond formation between the amine group of chitosan and carboxylic group of cysteine amino acid [37] , [38] . Ellman's reagent was used to quantify the conjugated cysteine molecules via sulfhydryl groups.…”
Section: Resultsmentioning
confidence: 63%
“…Typical biopolymers for biomedical applications include cellulose, chitin/chitosan, alginate, starch, and pectin, and the most common modification strategies are esterification, selective oxidation (TEMPO or periodate), amidation, and copolymerization with vinyl or acrylic monomers . Examples include carboxymethyl cellulose, or oxidized alginate and chitosan hydrogels for drug delivery, thiolated alginate hydrogels for hemostasis, enzyme‐assisted chitosan and pectin–gelatin hydrogels for chronic wound management, and cellulose, acrylic acid grafted starch, and κ‐carrageenan hydrogels for tissue engineering and drug delivery …”
Section: Functionalization Of Biopolymer Aerogelsmentioning
confidence: 99%
“…Typische Biopolymere für biomedizinische Anwendungen sind Cellulose, Chitin/Chitosan, Alginat, Stärke und Pectin, und die häufigsten Modifizierungsstrategien sind Veresterung, selektive Oxidation (TEMPO oder Periodat), Amidierung und Copolymerisation mit Vinyl‐ oder Acrylmonomeren . Beispiele dafür sind Carboxymethylcellulose, und oxidierte Alginat‐ und Chitosan‐Hydrogele für den Wirkstofftransport, thiolierte Alginat‐Hydrogele für die Hämostase, enzymunterstützte Chitosan‐ und Pectin‐Gelatine‐Hydrogele für die Versorgung chronischer Wunden und Hydrogele aus Cellulose, Acrylsäure‐gepfropfter Stärke und κ‐Carrageen zum Gewebe‐Engineering und für den Wirkstofftransport …”
Section: Funktionalisierung Von Biopolymer‐aerogelenunclassified