2017
DOI: 10.14805/jphchem.2017.art83
|View full text |Cite
|
Sign up to set email alerts
|

In silico development of a novel putative inhibitor of the 3C protease of Coxsackievirus B3 with a benzene sulfonamide skeleton

Abstract: Availability of X-ray crystal structure of 3C protease of several enteroviruses provided an opportunity for in silico drug design and development approach. Presented study is aimed at designing a novel compound targeting 3C protease of Coxsackievirus (CVB3), which is reported frequently to cause myocarditis in North America and Europe. A pthalimido-sulfonamide derivative (ZINC13799063) was identified through high-throughput virtual screening (HTVS) approach from the top HITs. A small library of phalimido-sulph… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2019
2019
2019
2019

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 37 publications
0
1
0
Order By: Relevance
“…CVB3 WT (5 × 10 5 TCID 50 /mL) was incubated with 20 μM compound 17, 20 μM compound 15 (an inactive analogue) [22], or an equal volume of assay medium) at six different temperatures ranging from 37–52°C for 2 min, followed by rapid cooling to 4°C. Subsequently, the infectious virus load of the different samples was quantified by end-point titration.…”
Section: Methodsmentioning
confidence: 99%
“…CVB3 WT (5 × 10 5 TCID 50 /mL) was incubated with 20 μM compound 17, 20 μM compound 15 (an inactive analogue) [22], or an equal volume of assay medium) at six different temperatures ranging from 37–52°C for 2 min, followed by rapid cooling to 4°C. Subsequently, the infectious virus load of the different samples was quantified by end-point titration.…”
Section: Methodsmentioning
confidence: 99%