2023
DOI: 10.1016/j.heliyon.2023.e13533
|View full text |Cite
|
Sign up to set email alerts
|

Improving extreme offshore wind speed prediction by using deconvolution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
10
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

2
3

Authors

Journals

citations
Cited by 43 publications
(15 citation statements)
references
References 34 publications
(95 reference statements)
0
10
0
Order By: Relevance
“…Identical definitions were valid for other MDOF components: Y ( t ), Z ( t ), … namely, Y1,,YNY;${Y}_1, \ldots ,{Y}_{{N}_Y};$ Z1,,ZNZ${Z}_1, \ldots ,{Z}_{{N}_Z}$ and so on. For simplicity, all system components were assumed to be nonnegative [ 30–33 ] P=()0,0.33em0,0.33em0,0.33em()ηX,0.33emηY,0.33emηZ0.33em,0.33empXTmax,YTmax,ZTmax,XTmax,YTmax,ZTmax,dXTmaxdYNYmaxdZNzmax$$\begin{eqnarray} P = \mathop {\iiint}\limits_{\left( {0,\ 0,\ 0,\ \ldots } \right)}^{\left( {{\eta }_X,\ {\eta }_Y,\ {\eta }_{Z\ },\ \ldots } \right)} {p}_{X_T^{{\rm{max}}},\ Y_T^{{\rm{max}}},\ Z_T^{{\rm{max}}},\ \ldots }\left( {X_T^{{\rm{max}}},\ Y_T^{{\rm{max}}},\ Z_T^{{\rm{max}}},\ \ldots } \right)\ {\rm{d}}X_T^{{\rm{max}}}{\rm{d}}Y_{{N}_Y}^{{\rm{max}}}{\rm{d}}Z_{{N}_z}^{{\rm{max}}}\end{eqnarray}$$…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Identical definitions were valid for other MDOF components: Y ( t ), Z ( t ), … namely, Y1,,YNY;${Y}_1, \ldots ,{Y}_{{N}_Y};$ Z1,,ZNZ${Z}_1, \ldots ,{Z}_{{N}_Z}$ and so on. For simplicity, all system components were assumed to be nonnegative [ 30–33 ] P=()0,0.33em0,0.33em0,0.33em()ηX,0.33emηY,0.33emηZ0.33em,0.33empXTmax,YTmax,ZTmax,XTmax,YTmax,ZTmax,dXTmaxdYNYmaxdZNzmax$$\begin{eqnarray} P = \mathop {\iiint}\limits_{\left( {0,\ 0,\ 0,\ \ldots } \right)}^{\left( {{\eta }_X,\ {\eta }_Y,\ {\eta }_{Z\ },\ \ldots } \right)} {p}_{X_T^{{\rm{max}}},\ Y_T^{{\rm{max}}},\ Z_T^{{\rm{max}}},\ \ldots }\left( {X_T^{{\rm{max}}},\ Y_T^{{\rm{max}}},\ Z_T^{{\rm{max}}},\ \ldots } \right)\ {\rm{d}}X_T^{{\rm{max}}}{\rm{d}}Y_{{N}_Y}^{{\rm{max}}}{\rm{d}}Z_{{N}_z}^{{\rm{max}}}\end{eqnarray}$$…”
Section: Methodsmentioning
confidence: 99%
“…and so on. For simplicity, all system components were assumed to be nonnegative [30][31][32][33] P =…”
Section: Methodsmentioning
confidence: 99%
“…As it will be seen from the current study, the bivariate Weibull method is well suited for abovementioned task. Weibull functions advantage lies within their ability to accurately approximate empirical 2D PDF contours (Balakrishna et al., 2022; Cheng et al., 2022; Gaidai & Xing, 2022; Gaidai & Xing, 2022a, 2022b; Gaidai et al., 2022a, 2022b; Gaidai et al., 2019; Gaidai, Cao, Xing, et al., 2023; Gaidai, Fu, et al., 2022; Gaidai, Wang, and Yakimov, 2023; Gaidai, Wang, Wang, et al., 2022; Gaidai, Wang, Wu, et al., 2022; Gaidai, Wu, et al., 2022; Gaidai, Xing, & Balakrishna, 2022; Gaidai, Xing, & Xu, 2022; Gaidai, Xing, & Xu, 2023; Gaidai, Xing, Balakrishna, et al., 2023; Gaidai, Xu, Hu, et al., 2022; Gaidai, Xu, Xing, et al., 2022; Gaidai, Xu, Yan, et al., 2022; Gaidai, Yan, & Xing, 2023; Gaidai, Yan, Xing, Xu, et al., 2022; Xu, Xing, et al., 2022; Zhang et al., 2018). Figure 3 shows contour plots of optimized asymmetric logistic (AL) Ak(ξ,η)${\mathcal{A}}_k( {\xi ,\eta } )$ and optimized Gumbel logistic (GL) core function Gk(ξ,η)${\mathcal{G}}_k( {\xi ,\eta } )$ matching empirical bivariate Weibull method function scriptÊk(ξ,η)${\hat{\mathcal{E}}}_k( {\xi ,\eta } )$, k0.33em=0.33em3$k\ = \ 3$, for AL, GL copula definitions, see Gaidai, Xing, Balakrishna et al.…”
Section: Bivariate Statisticsmentioning
confidence: 99%
“…Figure 3 shows contour plots of optimized asymmetric logistic (AL) Ak(ξ,η)${\mathcal{A}}_k( {\xi ,\eta } )$ and optimized Gumbel logistic (GL) core function Gk(ξ,η)${\mathcal{G}}_k( {\xi ,\eta } )$ matching empirical bivariate Weibull method function scriptÊk(ξ,η)${\hat{\mathcal{E}}}_k( {\xi ,\eta } )$, k0.33em=0.33em3$k\ = \ 3$, for AL, GL copula definitions, see Gaidai, Xing, Balakrishna et al. (2023) and Gaidai and Xing (2023). Conditioning number k0.33em=0.33em3$k\ = \ 3$ was chosen, as bivariate modified Weibull functions trueÊk${\hat{\mathcal{E}}}_{k\ }$ exhibited tail convergence to trueÊ3${\hat{\mathcal{E}}}_3$ (Gaidai, Wang, Wu, et al., 2022; Gaidai, Xing, & Xu, 2022; Sun et al., 2022; Xing et al., 2022; Xu, Wang, et al., 2022).…”
Section: Bivariate Statisticsmentioning
confidence: 99%
See 1 more Smart Citation