2017
DOI: 10.1111/gcb.13967
|View full text |Cite
|
Sign up to set email alerts
|

Impacts of climate change on rice production in Africa and causes of simulated yield changes

Abstract: This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a nega… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

4
101
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 202 publications
(125 citation statements)
references
References 77 publications
4
101
0
1
Order By: Relevance
“…Potato disease modelling, foresight, further model development Kroschel et al, 2013 [167]; Sporleder et al, 2013 [168]; Condori et al, 2014 [169]; Carli et al, 2014 [170]; Kleinwechter et al, 2016 [171]; Kroschel et al, 2017 [172]; Fleisher et al, 2017 [173]; Raymundo et al, 2017 [174]; Raymundo et al, 2017 [175]; Quiroz et al, 2017 [176]; Ramirez et al, 2017 [177]; Mujica et al, 2017 [178]; Scott and Kleinwechter, 2017 [179]; Petsakos et al, 2018 [180] AfricaRice: Model improvement, yield gap analysis, genotype × environment interactions, impact of climate change van Oort et al, 2014 [181]; van Oort et al, 2015 [182]; van Oort et al, 2015 [183]; Dingkuhn et al, 2015 [184]; van Oort et al, 2016 [185]; El-Namaky and van Oort, 2017 [186]; van Oort et al, 2017 [187]; Dingkuhn et al, 2017 [104,105]; van Oort and Zwart, 2018 [188]; van Oort, 2018 [189], Duku et al, 2018 [190] ICRAF: Agroforestry and intercropping modelling Africa Luedeling et al, 2014 [191]; Araya et al, 2015 [192]; Luedeling et al, 2016 [193]; Smethurst et al, 2017 [194], Masikati et al, 2017 [195] ILRI: crop-livestock-farm interactions Van Wijk et al, 2014 [196]; Herrero et al, 2014 [197] IITA: Modelling on Yams in West Africa Marcos et al, 2011 [198]; Cornet et al, 2015 [199]; Cornet et al, 2016 [200] ICARDA: Climate variability and change impact studies, foresight, conservation agriculture impact, genotype × environment interactions Sommer et al, 2013 [201]; Bobojonov and Aw-Hassan, 2014…”
Section: Cipmentioning
confidence: 99%
“…Potato disease modelling, foresight, further model development Kroschel et al, 2013 [167]; Sporleder et al, 2013 [168]; Condori et al, 2014 [169]; Carli et al, 2014 [170]; Kleinwechter et al, 2016 [171]; Kroschel et al, 2017 [172]; Fleisher et al, 2017 [173]; Raymundo et al, 2017 [174]; Raymundo et al, 2017 [175]; Quiroz et al, 2017 [176]; Ramirez et al, 2017 [177]; Mujica et al, 2017 [178]; Scott and Kleinwechter, 2017 [179]; Petsakos et al, 2018 [180] AfricaRice: Model improvement, yield gap analysis, genotype × environment interactions, impact of climate change van Oort et al, 2014 [181]; van Oort et al, 2015 [182]; van Oort et al, 2015 [183]; Dingkuhn et al, 2015 [184]; van Oort et al, 2016 [185]; El-Namaky and van Oort, 2017 [186]; van Oort et al, 2017 [187]; Dingkuhn et al, 2017 [104,105]; van Oort and Zwart, 2018 [188]; van Oort, 2018 [189], Duku et al, 2018 [190] ICRAF: Agroforestry and intercropping modelling Africa Luedeling et al, 2014 [191]; Araya et al, 2015 [192]; Luedeling et al, 2016 [193]; Smethurst et al, 2017 [194], Masikati et al, 2017 [195] ILRI: crop-livestock-farm interactions Van Wijk et al, 2014 [196]; Herrero et al, 2014 [197] IITA: Modelling on Yams in West Africa Marcos et al, 2011 [198]; Cornet et al, 2015 [199]; Cornet et al, 2016 [200] ICARDA: Climate variability and change impact studies, foresight, conservation agriculture impact, genotype × environment interactions Sommer et al, 2013 [201]; Bobojonov and Aw-Hassan, 2014…”
Section: Cipmentioning
confidence: 99%
“…Africa is far from self-sufficient in rice, and this situation is projected to worsen in the future (van Oort & Zwart, 2018). There are five options to close the gap between demand and production: (1) expansion of land under cultivation, (2) intensification in existing farmlands by growing two or three crops a year, (3) narrowing the yield gap in farmers' fields by introducing new technologies, (4) raising yield ceiling by introducing highyielding cultivars, and (5) reducing postharvest losses (van Oort et al, 2015).…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, the Representative Concentration Pathway (RCP), which is commonly used in future crop yield simulation research, is a greenhouse gas concentration trajectory adopted by the IPCC for its fifth Assessment Report (AR5) in 2014. Dias identified the yield and growth changes in rice under the global climate change scenario RCP 8.5 [26]; Dar focused on simulating the effect of climate change on crop yield with the Decision Support System for Agrotechnology Transfer (DSSAT) v 4.6.1 under RCP4.5 scenario [27]; Chun applied a multi-scale crop modeling approach to assess the impacts of climate change on future rice yields in southeast Asia under the RCP 4.5 and RCP 8.5 scenarios [28]; Van Oort calculated the impacts of climate change on rice production in Africa under four kinds of RCP scenarios [29]; Kim predicted potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 scenarios [30]; Zhang investigated the spatio-temporal change in extreme temperature stress across China under the RCP (2.6, 4.5, 6.0, and 8.5) scenarios [31]. Therefore, for future rice research, RCP provides a reliable and easy way for calculations, which is the reason why this paper chooses RCP as the future scenarios.…”
Section: Introductionmentioning
confidence: 99%