2005
DOI: 10.1039/b500162e
|View full text |Cite
|
Sign up to set email alerts
|

Hydrogen peroxide evolution during V-UV photolysis of water

Abstract: Hydrogen peroxide evolution during the vacuum-ultraviolet (V-UV, 172 nm) photolysis of water is considerably affected by the presence of oxalic acid (employed as a model water pollutant) and striking differences are observed in the absence and in the presence of dioxygen.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
41
0

Year Published

2009
2009
2020
2020

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 63 publications
(42 citation statements)
references
References 19 publications
1
41
0
Order By: Relevance
“…Some of these applications concern photo-chemical treatment of water [Azrague K et al 2005, Gonzalez et al 2004, volatile organic compound (VOC) remediation [Biomorgi J et al 2005, Koutsospyros A et al 2004, biochemical decontamination and remediation of toxic gases [Herrman H W et al 1999], realisation of non-coherent vacuum ultraviolet (VUV: 100 nm < λ < 200 nm) or ultraviolet (UV: 200 nm < λ < 400 nm) sources [Kurunczi P et al 1999, Masoud N et al 2004, material deposition [Babayan S E et al 1998], H 2 generation for fuel cells and diesel reforming [Qiu H et al 2004, exhaust treatment [Dietz et al 2004] … As far as non-coherent radiation DBD sources are concerned, VUV sources are of topical interest for a variety of industrial purposes such as plasma processing [Kogelschatz U et al 1999], surface cleaning [Korfatis G et al 2002] and modification [Wagner H-E et al 2003, Borcia G et al 2003, sterilization, decontamination and medical care. Recently some emerging scientific investigations were performed in neon [Carman R J et al 2010].…”
Section: Introductionmentioning
confidence: 99%
“…Some of these applications concern photo-chemical treatment of water [Azrague K et al 2005, Gonzalez et al 2004, volatile organic compound (VOC) remediation [Biomorgi J et al 2005, Koutsospyros A et al 2004, biochemical decontamination and remediation of toxic gases [Herrman H W et al 1999], realisation of non-coherent vacuum ultraviolet (VUV: 100 nm < λ < 200 nm) or ultraviolet (UV: 200 nm < λ < 400 nm) sources [Kurunczi P et al 1999, Masoud N et al 2004, material deposition [Babayan S E et al 1998], H 2 generation for fuel cells and diesel reforming [Qiu H et al 2004, exhaust treatment [Dietz et al 2004] … As far as non-coherent radiation DBD sources are concerned, VUV sources are of topical interest for a variety of industrial purposes such as plasma processing [Kogelschatz U et al 1999], surface cleaning [Korfatis G et al 2002] and modification [Wagner H-E et al 2003, Borcia G et al 2003, sterilization, decontamination and medical care. Recently some emerging scientific investigations were performed in neon [Carman R J et al 2010].…”
Section: Introductionmentioning
confidence: 99%
“…The influence of water in the system is currently subject to further study. The generation of hydrogen peroxide by (V)UV photolysis of water has been described previously [18], and we would expect further ROS such as hydroxyl radicals to occur.…”
Section: The Plasma Source Usedmentioning
confidence: 99%
“…dest. Single-stranded oligomers were hybridized to form double-stranded oligomers by mixing equal amounts of dC 18 and dG 18 , heating them to 988C for 2 min, and hybridizing them by allowing them to cool to room temperature over 4 h. Aliquots of 20 ml were spotted on glass (maximum spot diameter 3 mm), dried and treated with the different jets for 30 min in He atmosphere. Controls were treated with He/O 2 gas.…”
Section: Raman Spectroscopymentioning
confidence: 99%
See 2 more Smart Citations