2019
DOI: 10.3390/nano9040486
|View full text |Cite
|
Sign up to set email alerts
|

Hybrid Interface in Sepiolite Rubber Nanocomposites: Role of Self-Assembled Nanostructure in Controlling Dissipative Phenomena

Abstract: Sepiolite (Sep)–styrene butadiene rubber (SBR) nanocomposites were prepared by using nano-sized sepiolite (NS-SepS9) fibers, obtained by applying a controlled surface acid treatment, also in the presence of a silane coupling agent (NS-SilSepS9). Sep/SBR nanocomposites were used as a model to study the influence of the modified sepiolite filler on the formation of immobilized rubber at the clay-rubber interface and the role of a self-assembled nanostructure in tuning the mechanical properties. A detailed invest… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
8
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 16 publications
(10 citation statements)
references
References 31 publications
0
8
0
1
Order By: Relevance
“…As observed in the case of silica nanorods, the formation of oriented Sepiolite aggregates in the rubber matrix reinforce mechanical properties of composites [ 46 ]. However, a surface state modification (HCl treatment) of Sepiolites nanofibers is often performed in order to create more silanol surface reactive groups and to favour the filler/rubber interaction [ 47 ]. Another alternative to conventional fillers could be the use of hybrid fillers with identical or different morphologies [ 48 ].…”
Section: Introductionmentioning
confidence: 99%
“…As observed in the case of silica nanorods, the formation of oriented Sepiolite aggregates in the rubber matrix reinforce mechanical properties of composites [ 46 ]. However, a surface state modification (HCl treatment) of Sepiolites nanofibers is often performed in order to create more silanol surface reactive groups and to favour the filler/rubber interaction [ 47 ]. Another alternative to conventional fillers could be the use of hybrid fillers with identical or different morphologies [ 48 ].…”
Section: Introductionmentioning
confidence: 99%
“…Rapid atomic force microscopy (AFM) nanoindentation measurements give tip‐sample interaction curve at each point of the investigated area with a good resolution. Analysis of these data, in addition to the surface topography, gives a contrast of adhesion, stiffness (elastic modulus) of inhomogeneous polymers (Bahrami et al, 2015; Dokukin & Sokolov, 2012; Kaimaki, Smith, & Durkan, 2018; Schön et al, 2011; Yang, Chen, Ding, Liao, & Hwang, 2020; Young et al, 2011), filled rubbers (Cobani et al, 2019; Ohashi, Sato, Nakajima, Junkong, & Ikeda, 2018; Qu et al, 2011; including the stretched state (Morozov, Izumov, & Garishin, 2018) and the vicinity of defects and cracks (Morozov, 2016)), biological objects (Alsteens, Müller, & Dufrêne, 2017; Krieg et al, 2019), coatings (Morozov, Kamenetskikh, Beliaev, Scherban, & Kiselkov, 2020; Wei et al, 2020), and many other materials.…”
Section: Introductionmentioning
confidence: 99%
“…Речь, в первую очередь, идет о методиках быстрой наноиндентации, когда благодаря высокой скорости взаимодействия зонда с поверхностью, каждой точке исследуемой области соответствует своя кривая взаимодействия. Расшифровка этих данных, помимо рельефа поверхности, позволяет получить контраст адгезии, жесткости (модуля упругости) неоднородных полимеров [1][2][3][4][5][6], наполненных резин [7-9] (в том числе в растянутом состоянии [10], в окрестности дефектов и трещин [11]), биологических объектов [12,13], покрытий [14,15] и многих других материалов.…”
Section: Introductionunclassified