2011
DOI: 10.20982/tqmp.07.2.p032
|View full text |Cite
|
Sign up to set email alerts
|

Hidden Markov models and learning in authentic situations

Abstract: This paper introduces Hidden Markov Models for the analysis of authentic learning data from an applied field. For illustrative purposes, it shows how classical 2-state allor-none models can be extended to adequately fit the competence development process of nursery apprentices in a clinical context. It also presents some of the main underlying ideas, such as model specifications, parameters estimation, model selection, the Viterbi algorithm, and goodness-of-fit issues.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2014
2014
2020
2020

Publication Types

Select...
5

Relationship

3
2

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 21 publications
0
2
0
2
Order By: Relevance
“…AI provides a set of powerful tools to build applications that support teaching, training, and learning. Some of the AI technologies used in virtual surgery environments are: Hidden Markov Models (HMMs) [21][22][23], Support Vector Machine (SVMs) [24,25], Fuzzy Logic (FL) [26], and Bayesian Networks (BNs) [27][28][29]. Recent advances focus on deep learning and derived methods [30].…”
Section: Intelligent Systemsmentioning
confidence: 99%
“…AI provides a set of powerful tools to build applications that support teaching, training, and learning. Some of the AI technologies used in virtual surgery environments are: Hidden Markov Models (HMMs) [21][22][23], Support Vector Machine (SVMs) [24,25], Fuzzy Logic (FL) [26], and Bayesian Networks (BNs) [27][28][29]. Recent advances focus on deep learning and derived methods [30].…”
Section: Intelligent Systemsmentioning
confidence: 99%
“…il existe plusieurs indices d'adéquation qui permettent de sélectionner un modèle parmi un ensemble (Brown, 2006 ;harvey, 2011 ;hélie, 2006 ;Mccoach & Black, 2008) …”
Section: Processus De Sélection De Modèlesunclassified
“…L'algorithme du maximum de vraisemblance robuste est utilisé. Le modèle sélectionné est celui qui maximise les indices d'adéquation et dont les paramètres sont interprétables (Brown, 2006 ;Harvey, 2009Harvey, , 2011Hélie, 2006) Par dimension. Lorsqu'il s'agit de considérer les différences entre les modalités en ligne et papier pour chacune des six dimensions du questionnaire, le portrait demeure le même.…”
Section: Plan D'analysesunclassified