1992
DOI: 10.1016/0378-4371(92)90455-y
|View full text |Cite
|
Sign up to set email alerts
|

Hard and soft multifractal processes

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
42
0
2

Year Published

1998
1998
2015
2015

Publication Types

Select...
7
2

Relationship

2
7

Authors

Journals

citations
Cited by 102 publications
(54 citation statements)
references
References 19 publications
1
42
0
2
Order By: Relevance
“…its objects are mathematical functions defined at mathematical points. On the contrary, the generic multifractal processes -cascades -are singular measures, they are "delocalized", see Schertzer and Lovejoy (1992), Schertzer et al (2002Schertzer et al ( , 2010, so that strictly speaking, they are outside the scope of wavelet analysis. Wavelets may therefore not always be appropriate.…”
Section: Fluctuations and Waveletsmentioning
confidence: 99%
“…its objects are mathematical functions defined at mathematical points. On the contrary, the generic multifractal processes -cascades -are singular measures, they are "delocalized", see Schertzer and Lovejoy (1992), Schertzer et al (2002Schertzer et al ( , 2010, so that strictly speaking, they are outside the scope of wavelet analysis. Wavelets may therefore not always be appropriate.…”
Section: Fluctuations and Waveletsmentioning
confidence: 99%
“…Since the atmospheric turbulence, rainfall, and other geophysical processes interact with each other and the external environment, the microcanonical constraint appears highly artificial and such models should be considered essentially academic. The most important consequence of the microcanonical constraint is that the model necessarily returns upper bounded singularities, limiting the occurrence of extreme realizations (e.g., Schertzer et al, 1991;Schertzer and Lovejoy, 1992;Lovejoy and Schertzer, 1995).…”
Section: Introductionmentioning
confidence: 99%
“…On peut montrer (SCHERTZER et LOVEJOY, 1993) qu'il peut exister une valeur critique de l'ordre des moments q, q = qD, telle que les moments statistiques divergent dès que q > qD Un ordre de singularité critique y D correspond à l'ordre critique qD relatif aux moments et on démontre que pour les valeurs de l'ordre de singularité y supé-rieures à YD» la fonction de codimension C(y) devient linéaire, sa pente étant égale à qD Des analogies thermodynamiques ont conduit à qualifier de « transition de phase » le passage au-delà de l'ordre de singularité critique y D (SCHERTZER et LOVEJOY, 1992).…”
Section: Approche Multifractaleunclassified