The effects of harmonics, interharmonics, and subharmonics on low-voltage distribution networks, leading to a deterioration in electrical power quality, have become more evident in recent years. The main harmonic sources are power electronic devices due to their implicit nonlinearity. Interharmonic and subharmonic components are mainly caused by a lack of synchronization between the grid frequency and the switching frequency of the power converters. This can be caused by asynchronous modulated devices, or more commonly by fluctuations in the fundamental grid frequency. Interharmonic currents cause interharmonic voltage distortions that affect grid-synchronized or frequency-dependent systems. The IEC-61000-4-7 proposes a general guide on harmonics, interharmonic measurements, and instrumentation in current supply systems. However, the techniques proposed in the standard are intended for measurement and do not enable a precise identification of the interharmonic components in a signal. This work proposes new definitions for the spectral energy aggrupation to improve signal component detection for the IEC standard. Furthermore, an adaptive Kalman filter algorithm is developed that enables the exact identification in real time of the frequency, amplitude, and phase of these components. The proposed system will become the basis for the implementation of a new range of measurement systems that provide improved accuracy and real-time operation. The work is supported by simulated results analysing various scenarios (including transients after changes in harmonic content in the grid voltage) that demonstrate the effectiveness of the proposed method.